データ・アナリティクス入門

自社WEBメディアの問題解決に挑むリアルな試行錯誤

ミュージックスクール問題解決の手法は? 実際にミュージックスクールの課題をデータを用いて分析し、解決策を検討したところ、リアルな問題を考えることで、自分に置き換えリアルにイメージできるようになってきたと感じています。問題を問題解決ステップのWhat、Where、Whyまでを整理する習慣を身につけたいです。 WEBメディア運用でのベストプラクティスは? 私は自社WEBメディアの運用に従事しているため、以下のアプローチを取りたいと思います。まず、現状における問題を特定し、What、Where、Why、Howの各要素に分けて進めます。そして、A/Bテストやサイト上でのサムネイルの策定に時間をかけ、広告でのABテストにも時間をかけることで、効果を出していきたいです。 課題解決のプロセスで重要なことは? 原因をプロセス分解し、ボトルネックをきちんと把握することが課題解決の近道だと思いました。また、正解がない場合も広い視野を持ち、トライアンドエラーの精神で複数の選択肢を視野に入れて構築していくことが重要だと考えます。短期・長期のモデルを検討しながら、結果をしっかり分析し、最大限の効果が現れるように見極められるようになりたいです。

データ・アナリティクス入門

データ分析から始める業務効率化のアイデア集

分析はどのプロセスから始める? <印象に残った内容> ・プロセスに分解し、各プロセス毎に数値を見る ・A/Bテストの前に目的と仮説を明確にする ・データ分析はまず身近な課題から着手する A/Bテストの代替案は? <感想> A/Bテストはオンラインサービスとの相性が非常に良いが、対面サービスやコストの問題で簡単に実施できない場合の代替案が気になりました。 残業時間削減へのアプローチ ①社内で使用しているSFA(営業支援システム)の切り替えに伴い、入力画面のインターフェース検討においてFigma等のツールを使ってA/Bテストを実施し、手戻りが無いようにする。 ②今後の人員削減に伴い、業務の棚卸しを行う。 この切り替えは少し先になるため、思考訓練として自分の残業時間を減らすための施策を考えました。 まず、業務の洗い出しと各業務のプロセスの分析を行います。そして、以下の代案を検討します。 外注や自動化は可能? ・外注の可能性を探る  ・無料の外注が可能か  ・有料の外注が利用できるか ・自動化を進める ・不要なプロセスを廃止する 以上のステップを踏み、効率的かつ効果的な業務運営を目指したいと考えています。

データ・アナリティクス入門

標準偏差が拓く学びの新視点

データの全体像はどう捉える? 標準偏差を活用することで、データのばらつきを正確に把握でき、分析の全体像を掴むきっかけとなりました。平均値だけで物事を判断しないためにも、中央値など他の指標を併せて見ることの大切さを実感しています。 グラフで視覚的に理解できる? また、ヒストグラムは各グループの構成比を視覚的に捉えるのに非常に役立ちます。特に、世代などX軸の単位が明確なものの場合、グラフ化することで理解しやすくなると感じました。売上実績の分析など、データのばらつきを確認することで、より正確な施策の検討が可能になると考えています。 苦手意識は克服できる? 個人的には、以前は標準偏差に対して苦手意識がありましたが、全体のばらつきをとらえる重要な指標として積極的に活用する決意を新たにしました。さらに、ヒストグラムのように一目で内容を把握できるグラフ作成を通じて、プレゼンテーション時の相手の理解促進や、意思決定のスピード向上に貢献したいと思います。 分析の認識共有はどう進む? 今後の日々の分析においては、標準偏差やその他の代表値を取り入れ、データ全体の認識を共有することで、正確な判断に結びつけていきたいと考えています。

データ・アナリティクス入門

選ぶ力が分析を変える

手法選択は何が肝心? 様々なアプローチからデータを検討することで、仮説の精度が向上することを実感しました。しかし、すべての手法を無差別に試すのは非効率であり、分析の目的に沿った適切なアプローチを選ぶことで効率よく進めることが大切です。 代表値の選び方はどう? また、代表値には多くの選択肢が存在するため、データの性質や分析目的に応じた計算方法を選ぶ必要があります。一定の経験を重ねれば、どの代表値が最適かパターンを把握しやすくなると思います。 グラフ選びはどう判断? 製品の計測データなどを分析する際は、適切な代表値を選ぶことに加えて、標準偏差も併せて算出することが求められます。レポートを作成する際には、分析目的とデータの特性を踏まえて適切なグラフを用い、他者の手法に対しても改善の余地がないか検討する姿勢が大切です。 再検討の意義は何? これまで、代表値として単純な相加平均に頼ることが多かったため、今後はデータの性質を再検討し、その選択が本当に妥当なのかを吟味するようにしたいと考えています。また、グラフの選定についても感覚に頼るのではなく、目的を明確にした上で最適な可視化方法を選ぶよう努めます。

戦略思考入門

差別化戦略で競争優位を築く方法

差別化の鍵は何? 3Cのフレームワークで学んだことを通じて、差別化戦略を考える際の重要なポイントとして、訴求するターゲット顧客の設定と顧客視点での競合の設定があることを理解しました。 自社をどう活かす? この考え方を基に、自社のリソースで何が可能であり、また中長期的な差別化がどのように実現できるかを検討する必要があります。競合に意識を向け過ぎると顧客への配慮が薄れるため、常に大局的に物事を見る習慣を身につけたいと考えています。 自部署の価値は? バックオフィス業務の集約化・効率化を図る自部署の業務形態を考えると、顧客は本社や店舗であると理解しています。この範囲内では直接的な競合は存在しないものの、将来的に業務の範囲を社外まで広げる際には競合との差別化が不可欠です。そのため、自部署が提供できる価値を改めて整理する必要があると感じました。 資源の整理は? 顧客や競合の設定に先立って、現状の情報整理が不十分であると感じています。そこで、今回のVRIO分析を参考にしながら、自部署が持っている価値、希少性、模倣困難性、そして組織としてどのような資源があるのかを整理することから始めたいと考えています。

マーケティング入門

売り手と買い手視点の融合で新たな映像体験を

講義で何が響いた? 今週はライブ講義の総まとめがありました。その中で、ビジネスに関わる自分たちが売り手であると同時に、買い手でもあることを忘れてしまいがちだという意見が他の受講生から出され、非常に共感しました。買い手としての視点を客観的にとらえることは、大きなリソースになり得るのだと強く感じました。 感情で分ける理由? この視点を自分の仕事や業界に当てはめると、映像作品のターゲット設定に役立つと考えています。従来のgenderや年齢でのターゲティングに加えて、視聴者がコンテンツに求める感情(例えばスリル、ワクワク、笑い、感動など)に基づいて新たな視点でセグメントを導入することを検証してみたいです。 調査はどう進める? そのために、消費者調査チームと連携し、より効果的なセグメント設定や調査方法を検討する予定です。また、データ分析チームと協力して、過去の視聴傾向を嗜好で分析することも考えています。さらに、コンテンツ消費はお金よりも「時間」の消費であるため、タイパを重視する世代や時代の傾向にも対応できるよう、プロダクトの視点で作品を見ることで得られる感情を示す工夫をするなどの方法を模索していきたいと考えています。

クリティカルシンキング入門

偏見を超えて成長する思考力の秘訣

無意識の偏りは? 質問を受けた際、自分が無意識に思考の範囲を限定していることに気付きました。そして、普段行わない行動を求められたとき、自分の得意な方向に考えてしまうという講師の指摘にも納得しました。例えば、ラグビーを未経験の人が「やってみて」と言われてもすぐには上手くできないように、クリティカル・シンキングも同様であるとイメージできました。今後は、自分の偏った思考を認識し、意識的に実践して繰り返すことで、自然に批判的思考ができるよう努めていきたいと思います。 なぜ結論に至る? また、事務リスクの未然防止策を検討する際の原因分析や仮説の検討にもこの考え方が活用できると感じました。確証バイアスにとらわれがちなので、導いた結論が本当に正しいのか、なぜその結論に至るべきなのかを深く分析するよう心掛けたいと考えています。 他者の意見は? さらに、自分で深掘りして分析するだけでは偏った思考が反映されてしまう可能性があるため、他者の意見を聞いて他者からの思考のヒントを得る努力も必要であると思いました。すべてを自分だけで完結させないようにし、チームメンバーの協力を得ながら自身の成長につなげる意識を持つようにしていきます。

アカウンティング入門

アカウンティングで広がる新たな視点

アカウンティングの理解を深めるには? アカウンティングの重要性や、事業活動の意味、事業活動を定量化する指標について、今まで漠然と理解していたことがしっかりと言語化され、体系的に整理されました。これにより、頭の中にフレームが形成され、とてもすっきりとした気持ちです。このフレームに情報や知識を加え、自分の中で考えを整理していくのが非常に楽しみです。 自社のP/LとB/Sをどう活用する? まず、自社のP/LとB/Sを読み解けるようになり、俯瞰的な視点で自部署や他部署の事業活動を再考したいと考えています。その後、競合他社のP/LやB/Sを分析し、自社と比較することで、改善や成長のポイントを見つけたいです。 理解を深めるためのアプローチは? 本講座を通じて、すべての内容をしっかりと理解し、疑問点がない状態で修了したいと考えています。その上で、自社のデータを読み解く際に生じる不明点については、上司に相談したり、質問の機会を作りつつ理解を深めたいと思います。競合他社の分析に関しては、特定の企業をピックアップし、理解を深めたいです。また、アカウンティングに詳しい周りの方々に声をかけ、比較検討会の実施を提案したいと考えています。

クリティカルシンキング入門

社員研修の見直しで業務効率アップへの道

イシュー設定の重要性を認識 イシューから考えることの重要性を認識しました。施策を考え始める前に、まずイシューを明確かつ具体的に立てることが大切です。これまでに学んだデータの分析・加工方法を活用し、様々な角度からイシューを検討して特定することが必要です。 なぜ研修が必要なのか? 現在の業務において、人事施策、例えば研修内容を検討する際、研修を実施することが目的となりがちでした(= 手段の目的化)。そうではなく、「なぜ研修が必要なのか」を考え、社内のイシューを様々な角度から抽出したうえで、その解決方法として研修が適切ならば研修を行うべきです。しかし、研修以外が適切と判断される場合は、研修を行わない選択も必要だと感じました。 社内イシューをどう特定するか? 社内・現場のイシューを的確に把握するために、従業員へのアンケートや管理職への個別ヒアリングを通じて、イシューの特定を丁寧に行っていきたいと考えています。イシューの特定には、その根拠を具体的かつ明確に説明し、そのうえで研修が適切な解決策なのかを検討します。研修またはその他施策により、特定したイシューの解決を行っていきます。まずは今週から取り組むこととしました。

クリティカルシンキング入門

課題を「分解」してデータを見落とさない秘訣

解像度向上の手法とは? データの解像度を上げる手法をいくつか学びました。「全体像をとらえる」ことで近視眼的な視点から脱却し、「分解」を積極的に取り入れることで、課題や問題をより具体的に抽出することが可能です。漏れや抜けをなくすことが、一見遠回りのように見えても、結果的には最も効率的な方法であると感じています。 異なる視点での分析の重要性 売上分析や時間帯分析などを行う際には、ただ数字を並べるのではなく、違う角度からの見え方を取り入れることで、見落としや抜けを防ぐことができると考えています。プレゼンの機会があった際も、通り一遍の見方ではない切り口を提案することで、新たな課題を抽出することができるのではないかと感じています。 数値報告での注意点は? 月例のミーティング用に数値報告の素材を提供する際は、以下の点に注意しています: - 並べた数字を別の視点で並べ替える。 - 補完できる部分がないか同僚に相談し、思考や見方の偏りに気付く。 - すでにグラフ化されているものについては、異なる切り口で見せ方を検討し、恣意性がないか確認する。 これらの工夫により、より具体的で効果的なデータ分析が可能になると実感しています。

データ・アナリティクス入門

1月の謎に挑む!仮説力の全貌

仮説の違いは何? 仮説を立てる際に活用できるフレームワークについて、改めて学ぶ機会となりました。そこで、結論としての仮説と、問題解決のための仮説という2つの考え方があることを理解しました。また、問題解決プロセスにおいては「where(どこで)」「why(なぜ)」「how(どのように)」の視点を意識することが重要だと認識しました。 利用状況変化はなぜ? 具体的な事例として、12月から1月にかけてサービスの利用状況が低下した際の対応を検討しました。結論の仮説としては、長期休暇中にサービスから離脱が起きたという点を重視しました。同時に、特に正月期間にユーザーの離脱、すなわちチャーンが発生した可能性に着目し、問題解決に向けた仮説を立てました。さらに、年末年始の背景を踏まえ、プッシュ通知などでログインを促す導線を作ることが有効ではないかという仮説も検討しました。 データで何が分かる? 加えて、12月から1月のサービス利用状況について、デイリーベースでデータ分析を実施しました。離脱ユーザーの属性やこれまでの傾向を可視化するとともに、プッシュ通知などのお知らせがログインのフックとして機能するのかをテストする工程を経ました。

データ・アナリティクス入門

論理とフレームワークで拓く未来

フレームワーク活用は? 課題に対して仮説を立てる際、4Pや3Cなどのフレームワークを活用することで、これまでの漠然としたアプローチから、より効率的かつ効果的な方法へと進化できることを実感しました。従来の方法と比べ、論理的に整理された仮説構築が可能になり、今後の取り組みに大きな期待を持っています。 客観データで見直す? また、仮説思考においては、反論を排除せずに客観的なデータ収集を行い、都合の良い解釈にとらわれないことが重要だと学びました。仮説が間違っている可能性を認め、検証に基づいた見直しを行う姿勢が、正確な結論に繋がると感じています。 問題解決の切り口は? 今後は、問題解決に向けて複数の仮説を立てる際、フレームワークを活用しながら様々な切り口で検討していきたいと思います。これまで何となく仮説を立てていた点を改め、より具体的かつ体系的なアプローチを心掛けるつもりです。 進行中の分析は? 現在進行中のデータ分析に関しても、今回の学びを活かし、もう一度仮説を立て直して検証を行います。日々の業務において常に仮説と検証のプロセスを意識し、フレームワークの活用に習熟することで、より確かな成果を目指していきます。

「分析 × 検討」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right