データ・アナリティクス入門

問題解決と最適化に役立つ具体的手法を学ぶ

問題解決の順序がカギ? 問題解決のプロセスについて、「What、Where、Why、How」の順に進めることの重要性を再確認しました。問題理解と適切な対策を講じるためには、なぜなぜ分析を行い、真の原因を見つけ出すことが不可欠です。このプロセスは、提案時の逸注分析やプロジェクトのトラブル、営業活動におけるクレーム対応などの場面で活用できます。 A/BテストでCROを最適化するには? また、A/BテストがWebマーケティングにおけるCRO(コンバージョン率最適化)の手法の一つとして有効であることを学びました。この手法は事業プランの策定時にも有効です。具体的には、異なる案を用意して比較し、優れた点を組み合わせてブラッシュアップしていく方法です。マーケットプランにおいても、自社案と協業先の案を出し合い、検証や補完を行うことで、より確実なプランを作成することができます。

データ・アナリティクス入門

目的から逸れずに効率UP!分析のコツ

目的設定はなぜ重要? 目的と比較の設定は非常に重要です。特に他者に仕事を依頼する際は、これが鍵となります。分析においても、目的に沿った意味のある係数と、そうでないものを見極める必要があります。目的によってその意味は変わり、使い方次第では係数の有無も変わってきます。 自己分析で気をつける点は? 自己分析の際も、目的からぶれないことが重要であり、目的に応じた答えや提案が含まれるインサイトを得られるかを考慮する必要があります。チームに依頼する際も同様に、彼らの仕事が意味を持つよう、効率化できるポイントを設定します。 比較時に確認すべきことは? 何が目的なのかを明確に書き出し、何をどの観点から比較したいかを考慮します。また、目的から逸れそうになったら立ち返って確認することが大切です。比較がきちんと同じ条件下で行われているかも再度確認しなければなりません。

クリティカルシンキング入門

問いが拓く新たな視野

本当の考えは何? 思考を整理するために、まず自分の考えに対して「本当にそれで良いのだろうか? 他の可能性はないか?」と問いかけることの大切さを学びました。この方法により、普段の考えにもう1人の自分を加え、視野を広げる手法の有効性を実感しました。 別の切り口は? また、3つの視点とMECE的な分析を取り入れることで、物事を多面的に見るスキルが向上しました。具体的には、求人広告の改善提案など仕事において、普段と異なる切り口でアプローチし、複数の改善案を迅速に提示できるようになる効果を感じています。そのため、自分の思考に対して常に「なぜその選択をするのか」「他の案はないか」を問い続ける習慣を身につけることの重要性を改めて認識しました。 次はどう実践? この学びを今後の業務や日常の問題解決に活かし、より多角的かつ柔軟な思考を実践していきたいと考えています。

データ・アナリティクス入門

なぜ?と問い続ける現場改善の鍵

なぜ根本原因を追究? 課題解決にあたって、「なぜ?」と問い続けることにより、真の原因にたどり着けるという学びを改めて実感しました。表面的な数字だけに頼るのではなく、深く掘り下げることで問題の核心が明らかになり、解決までのスピードが大きく変わることを感じています。 数字だけで把握できる? 生産ラインの稼働率については、数字だけでは原因を十分に把握できない点が問題でした。そこで、MECEの考え方を取り入れ、品種別や曜日別といった多角的な視点から分析することで、従来は見落とされがちだった問題点を浮き彫りにできると考えています。 どうやって協力体制を作る? このような分析手法をもとに、自身の意見を整理して製造現場に提案し、全員で協力して稼働率向上を図りたいと思います。より具体的な視点で原因に迫ることで、現場全体の改善へと繋げていきたいです。

データ・アナリティクス入門

データ分析をもっと身近に感じよう

比較分析の考え方とは? 分析とは比較であるという考え方には改めて納得しました。特にビジネスの現場では、目的に応じて分析のアウトプットが変わるため、前提条件の確認を怠らないよう心がけたいと思います。 データ分析の意識法は? 日常業務でデータに触れる機会が多いですが、まずは仮説や問いを立て、目的に沿った分析を意識したいです。データ分析自体を目的とせず、次の提案につながるアウトプットを目指します。 仮説を立てる重要性について 正しい仮説や問いを立てるためには、現状把握や周りとの意見交換を徹底し、怠らないようにします。ビジネスのゴールから逆算してデータ分析を行い、常に目的を忘れないようにします。また、データの整理や可視化についても学び、分析の全体的な流れをスムーズに進められるようにしていきたいです。

データ・アナリティクス入門

仮説が切り拓く多彩な世界

どう仮説を活かす? 仮説を立てることで、物事に対して多角的なアプローチが可能になります。偏った考えに陥らず、さまざまな観点から状況を把握することにより、自分自身の理解を深めるとともに、他者を説得するための材料としても活用できるメリットがあります。例えば、「こうだったら、こうではないか?」や「その逆はどうか?」といった問いかけを行うことで、あらゆる角度から物事を捉える習慣を身につけることができます。 ビッグデータ検証は? ビッグデータを扱う際には、仮説の重要性が特に高まります。決めつけることなく、あらゆる可能性を念頭に置いて分析することで、物事の本質に迫ることができるのです。また、このアプローチは、他者への提案や情報の共有にも役立ち、柔軟な発想を促す大切な手法と言えるでしょう.

データ・アナリティクス入門

自ら選ぶデータ分析の真髄

データ分析から何が学べる? データ分析を通じて、体系的な課題解決方法を学びました。実際に扱うデータは自ら補完する必要があるため、比較意識を持って必要な情報を選定するスキルを高めたいと考えています。 応用力はどこから来る? また、業務全般に応用可能なフレームワークや思考パターンを習得できたと感じています。単一の業務でなく、思考が求められる多くの場面で今回の学びを実践し、常に意識を持って取り組んでいきたいと思います。 課題対策は具体的に? 違和感や課題に直面した際は、確認を含む仮説の立案やプロセスの細分化を意識して行いたいです。分析フェーズでは、比較を通じて実証を目的としたデータ抽出や多角的な視点からの提案を心掛け、より具体的な検証ができるようになりたいと考えています。

データ・アナリティクス入門

角度変えて見つける学びの真髄

多角的に見る大切さは? 物事は一方向からだけではなく、さまざまな角度から捉えることで本質に迫ることができます。一つのデータだけでなく、多くの情報を比較検討しながら分析を進める必要があり、見極める力を養うことが大切です。 データ活用のポイントは? 定量データを扱うことが多い中で、そのデータをどう活かすかを常に検討することが求められます。正確なデータの取り扱いをはじめ、集めた情報を蓄積し、前後の変化を比較することが、分析力向上の基礎となります。 数字のパワーを知る? また、分析により提案が有力な判断材料となるよう、数字の扱い方や活用方法にも工夫が必要です。数字が持つパワーは、その扱い方次第で大きく変わるため、具体的な活用策を考えることが重要です。

データ・アナリティクス入門

目的と仮説で拓くEC成功ストーリー

目的は明確? 私は自社ECサイトの制作に携わっており、グーグルアナリティクスやその他のアクセス解析ツールを用いて分析を行う機会があります。その際、まず目的と仮説を明確にし、データに向き合う前に自分自身やチームメンバーと共有することが重要であると実感しています。 分析報告は納得? また、分析結果を報告する際にも、目的や仮説を伝えるように心がけています。これまでデータそのものとそこから読み取れる情報、そしてそれに基づく提案を中心に報告していましたが、仮説も合わせて示すことで、第三者にとってより理解しやすく納得のいく内容になることに気づきました。

「分析 × 提案」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right