戦略思考入門

実務に生かす学びの一歩

授業内容をどう実務化? 授業で学んだ内容を業務にどう活かすかを考える過程で、配車アプリと中古車販売事業のシナジーに関して、まだ自分の視野が狭く、知識が十分に定着していないと痛感しました。そのため、基礎から復習し直す必要があると感じています。 動画学習は何を教える? 動画学習では、規模の経済性において、生産量が月ごとに変動する場合、調整の仕方によっては不経済になる可能性があるという点が新たな学びとなりました。また、習熟効果に関しては、問い合わせに対応する際の時間差から、チーム内でのスキルのばらつきを感じることができ、これをどう改善していくかという対策の重要性を再認識しました。 具体策はどう進める? 具体的な取り組みとして、習熟効果を高めるために、まずは定例会議で事例の共有とポイントの説明を行うこと、また、よくある質問やその回答をまとめた資料を作成し、いつでも参照できる環境を整えることを計画しています。これにより、チーム全体の対応力を底上げできると考えています。 連携で成果はどう? さらに、範囲の経済性については、他部署と共同で展示会などを行う際に得られるメリットを整理し、具体的な提案ができるよう、事前に自社のバリューチェーンを再分析することを進めています。こうした取り組みを通じ、実務に直結する形で学びを業務に生かしていきたいと思います。

クリティカルシンキング入門

生産部門のトラブル解決に光明を見出す学び

ゴール達成への基本戦略は? 以下2点について学びました。 1. 到達したいゴールに向けてマイルストーンを設定し、その時々でイシューを考え、それに対する打ち手を取る必要がある。 2. データをさまざまな角度から分析し、イシューを特定する必要がある。 業務としては製薬会社の生産部門におけるトラブル解決を担当しております。この知識を業務にどう活かせるか、以下の具体例が思い浮かびました。 トラブル解決に必要な視点とは? まず、年間目標や個々の業務における課題解決においては、到達したいゴールに向けてマイルストーンを設定し、それぞれのタイミングでイシューを特定し、具体的な対策を検討することが必要です。 次に、生産部門におけるトラブルの原因究明とその解決策の立案については、様々な角度からデータを分析し、イシューを特定することが重要です。これにより、より的確な原因分析と解決策の提案が可能になります。 メンバー育成に活かせるアプローチは? 最後に、部門におけるメンバーのキャリア開発と育成についても、前述の2つの原則を適用することができます。メンバーの成長に向けた目標を設定し、その達成のための具体的なイシューと打ち手を考えます。 以上のように、学んだ知識を活用して業務を進めていくことで、課題解決能力の向上や部門の効率化が期待できると考えます。

クリティカルシンキング入門

適切な問いが導くデータ活用術

適切な問いはなぜ? 今週の学びを通じて、問題解決における「適切な問いの設定」の重要性を改めて認識しました。明確に定義された「解決すべき課題」が、効果的な分析と解決策の導出につながることを学びました。また、データの適切な加工と分析によって情報を構造化し、視覚的に明確な形で提示する手法の有用性を実感しました。さらに、データの図表化が分析の精度向上に寄与することを体感し、実務での具体的な活用方法を見出すことができました。 現職での実践は? 「問いを立てる力」と「データの分析手法」を現職の業務改善プロジェクトで実践していきます。業務フローの課題特定に際しては、チームメンバーと「本質的な課題」を共有し、分析を深めるプロセスを確立しようと考えています。また、提案資料作成においてはデータの視覚化を通じて説得力を高め、経営層の的確な意思決定をサポートしたいと思います。 解決力高める秘訣は? 課題解決力を高めるため、以下の取り組みを実践します。毎週の振り返りで課題を整理し、本質的な問いを設定し、分析結果を図表化してチームで共有し、活発な意見交換を行います。わかりやすく論理的な資料作成を心がけ、改善を重ねます。また、学んだ内容を繰り返し実践し、定期的な振り返りで成長を目指します。これらの取り組みを通じて、実務での課題解決力を高めていきたいと考えています。

デザイン思考入門

可能性を拓く営業とデザインの出会い

デザイン思考はどう違う? 今回の講義では、デザイン思考が唯一の正解ではなく、仮説・分析・検証といった他の思考法と組み合わせることで真価を発揮する点が印象的でした。特に、コンサルティング的なアプローチとの補完関係を強調していた内容が新鮮に感じられ、今後、SPIN営業法との親和性やその違いについてもさらに深掘りしてみたいと思いました。 視点の広がりは何故? また、課題で「まな板のフロー」を考える際、無意識にデザイン思考の5ステップを模倣してしまった経験から、視点の幅を広げる必要性を強く感じました。 顧客対話はどう磨く? 営業活動においては、顧客の課題を深く理解し、潜在ニーズを引き出すことが重要です。デザイン思考の「共感」や「アイデア発想」は、SPIN営業法の質問設計と共通する部分があり、顧客との対話をより創造的にする効果があると感じています。さらに、製品提案にとどまらず、顧客体験全体を設計する視点を取り入れることで、差別化された価値提供が可能になると考えています。 共感と発想の理由は? 今後は、まず顧客ヒアリング時に単なる要件確認に留まらず、顧客の背景や感情に踏み込む「共感フェーズ」を意識します。次に、営業提案においては、既存の枠を超えた解決策を模索する「アイデア発想」のプロセスを積極的に組み込んでいきたいと思います。

クリティカルシンキング入門

イシュー発見で未来を拓く学び

イシューはどう見抜く? 課題解決を進めるためには、まずイシューを特定することが重要です。これは、課題に対して最適かつ迅速な解決策を導くための基本であり、どの取り組みが最も効果的に課題を解決できるかを明確にするためです。具体的には、データを分解してイシューの特定を容易にし、内部環境と外部環境を分析することで、課題の本質を正確に把握する必要があります。さらに、イシューを問いの形にし、具体的かつ一貫して検討する点にも留意することが大切です。 IT戦略はどう考える? 学んだ手法とその解決方法を、自社業務と顧客先業務の双方に活かすことができると感じています。自社業務では、IT戦略を考える上で、どの領域に投資するかを提案することを目的とします。まず、自社の売上データを分解し、内部・外部環境を分析することで、ビジネスインパクトの大きい領域を特定します。その上で、従来のIT導入を促す戦略ではなく、顧客企業の利益向上を目的とした戦略を検討するための問いを立てたいと考えています。 業務効率改善はどう進む? 一方、顧客先業務においては、業務効率化を提案することが目的です。具体的には、システム検証業務において最も時間がかかる工程を確認し、どのタスクを削減できるかという問いを設定することで、より効率的な業務改善に繋げることができると考えます。

データ・アナリティクス入門

数値とグラフで切り拓く現場力

平均値の違いは? 代表値の種類について学んだ内容はとても印象的でした。単純平均、加重平均、幾何平均、中央値という4つの代表値の違いを理解することで、従来は感覚や指示に頼っていた数値の選択を、論理的かつ具体的に検証できるようになると感じました。今後は、各平均値の特徴を自分の言葉で説明できるよう意識しながら実務に活かしていきたいです。また、Excelの関数を活用して算出することで、より実践的な理解が深まると考えています。 標準偏差の意味は? 標準偏差に関しても、データのばらつきや密集度を数値で把握する有効な指標であることを学びました。従来、平均値だけに注目していた自分にとって、標準偏差を組み合わせて分析する視点は新鮮でした。これからは、データの分析や仮説の立案において、平均と標準偏差の両面からアプローチすることで、より説得力ある結論を導き出せるよう努めていきたいと思います。 グラフはどれを選ぶ? また、ヒストグラムについても初めて触れる機会があり、その有用性を実感しました。今まであまり業務で使用する機会がなかったグラフですが、各グラフの長所と短所を理解することで、情報の伝達方法の幅が広がると感じました。今後は、提案書などでどのグラフが何を効果的に表現できるのか、理由をもって選択できるよう、実践的に活用していきたいと思います。

戦略思考入門

異なる視点が生む成長の物語

個性の違いを感じる? 同じ職場で同じ業務に携わっていても、個々の考え方や向いている方向が異なることを学びました。異なる見解を否定するのではなく、別の視点を取り入れることでチーム全体の視野が広がり、より質の高いアウトプットが期待できると実感しています。 分析で全体を見直す? また、各種フレームワークを用いた分析を通して、事業全体や自分自身の業務を大局的に見直すことができると感じました。定期的にこれらの手法を実践することで、プロジェクト全体や自身の状況を整理し、効果的な改善・提案に結びつけたいと考えています。 共有で理解深める? さらに、普段当たり前と捉えている業務の内容も、言語化や図表化して共有することにより、チーム全体の目的意識を維持する手段になると確信しています。施策を提案する際には、フレームワークを活用して背景・根拠・想定される効果を明確にし、ストーリー性を持たせた説得力のあるアプローチを心がけたいと思います。 説得力の根拠は? チームメンバーとのコミュニケーションにおいては、分析結果を交えることで自身の主張に説得力が増すと感じています。業務推進においては、感覚だけに頼らず、3C分析やSWOT分析などを参考にしながら、合理的な判断とその決断が全体に与える影響を考慮することを意識していきたいと考えています。

データ・アナリティクス入門

4ステップで掴む課題解決の秘訣

4ステップを理解? 今週は、問題解決の4ステップ「What(何が問題か?)」「Where(どこに問題があるか?)」「Why(なぜ問題が起きているのか?)」「How(どうするか?)」を学びました。これにより、問題を定量化し、範囲を絞り、原因を分析して具体的な解決策を導くという、論理的な課題整理の手法が実践的に理解できました。 ロジックツリーの効果? また、ロジックツリーの活用法も学び、問題を「モレなく・ダブリなく(MECE)」分解する方法が、構造的な分類や深掘りにとても役立つと感じました。現場での意思決定や具体的な課題整理に、この手法を応用できる点が印象的でした。 企画立案のコツは? 企画の立案時には、問題解決の4ステップを活用し、過去と未来の問題に分けて検討することで、理想の状態を明確にし、提案が本質から外れないよう注意することができると実感しました。加えて、アイデア出しの際にロジックツリーを用いることで、問題を細かく整理し、深い考察が可能になる点も大きな学びでした。 実行前に再確認? 思いついた企画をすぐに実行に移すのではなく、一度立ち止まって問題解決のステップを確認すること、そして企画が進行している段階でも都度、本来あるべき状態と現状のギャップを再確認することの重要性を感じました。

戦略思考入門

戦略再定義で見つけるゴールの真髄

戦略の再定義はどう? 普段、漠然と使用していた「戦略」という言葉を改めて定義し直し、「ゴールを明確化すること」の重要性を再認識しました。演習問題では「ゴールが明確でない」と感じましたが、実際の業務では「手段」に目が行きがちだと気付きました。「ゴール」についても、自分が考える「目標・ゴール」ではなく、組織全体としての「ゴール」を考える必要がありますが、異なる価値観を持つ人々の集合体である組織において、その「ゴール」を設定する難しさを感じています。今後、この点についてさらに学んでいきたいと思います。 企画業務で何を見抜く? 企画業務においては、企画の実現に向けた戦略的なアクションが必要です。人事部としての目指すゴールと事業本部の目指すゴールが初めから一致することは少ないです。そのため、傾聴して相手のニーズを分析し、必要に応じて人事部から提案することで、最終的に共通の「ゴール」を設定し、実現に向けた手段を検討していく必要があります。 論理と共通解は何? 自分の考えを論理的にまとめるだけでなく、周囲の人々の状況や考えを認識し、共通する結論、つまり目指すゴールや解決策を見出していくことが求められます。本講座のグループワークでも、自分の意見を押し通すのではなく、グループとしての最適解を導き出せるよう努力しました。

データ・アナリティクス入門

マーケットの広がりを感じる分析の魅力

データ比較で新たな発見をどうする? 他のデータと比較することで、新たな洞察を見出すことが重要です。分析のプロセスとしては、まず目的を明確にし、次に問いに対する仮説を立て、その後データを収集し、最終的に分析によって仮説(ストーリー)を検証します。 どの分析視点が有効か? 分析における視点としては、インパクト、ギャップ、トレンド、ばらつき、パターンを見ることが大切です。具体的なアプローチとして、代表値(単純平均、加重平均、幾何平均、中央値)やばらつき(標準偏差)を使うことで、データの特徴を理解します。 仮説検証で気づく新たな問題は? 提案する際に、自分の仮説を立証するためのツールとして、これらの手法を使いたいです。仮説には正解がないことから、むしろ仮説が間違っている場合は、実際の状況とのギャップに気づきやすくなり、新たな問題発見につながります。ですので、間違った仮説を立てることも恐れず、仮説の幅を広げたいと思います。 勘と経験を超えて新たな仮説を 長年、勘と経験で仮説を立てていましたが、自分の思考範囲を超えた仮説を立てることで、マーケットの状況を広く知り、新たな問題点に気づけるようになります。また、いろいろなグラフを作成し、自分の仮説に対して一番説得力があるものを比較してみたいと考えています。

データ・アナリティクス入門

データで挑む問題解決の旅

問題解決の順序はどう? 問題解決のステップとして、「What, Where, Why, How」の順序で進めることが重要です。やみくもに分析を開始するのではなく、順序立てて進め、数字に基づいたストーリーを構築することが求められます。データ分析においては、比較対象をはっきりさせ、集めたデータをしっかりと加工し、原因を特定する努力が重要です。 採用改善はどう進める? 採用手法を模索する中で、SNSや自社サイトの採用ページの改善を進めるには、コンバージョン率やファネル分析を活用して、離脱ポイントを特定することが有効だと考えました。それにより、コンテンツの見直しも可能になります。 企画提案の進め方は? このように分析を進める際は、初めに仮説を立て、結論のイメージを持つことが肝要です。何のために分析をするのか目的を明確にし、課題を特定するステップで進行することが大切です。特に、来年度に向けての企画提案の時期においては、データを活用して説得力のある資料を作成したいと考えています。そのために、データ分析の手法を復習し、自分自身の知識として確立する必要があります。また、データをさらに深く理解するためには、エクセルの関数についても知識を深めることが必要そうです。これについては、AIを活用し、日々学び続けたいと思っています。

データ・アナリティクス入門

データで紡ぐ成長の物語

データ整理は安心? データの切り出し方について、以前は数字が欲しいならこれといった感覚で扱っていたため、具体的に整理する作業が非常に有意義でした。成長率の求め方についても久しぶりに見直し、これまで間違った計算方法を用いていたことに気づけたのは大きな収穫です。 分布分析の効果は? 定量分析の手法として、代表値と分布に注目し、データをビジュアル化してより理解しやすくする方法を学びました。平均値が外れ値の影響を受けやすいという点に加え、単純平均、加重平均、幾何平均、中央値といった代表値や、標準偏差を用いた散らばりの把握、さらにはヒストグラムでばらつきを表現するテクニックが印象に残りました。 データ活用の秘訣は? また、ECにおける購入者分析や売上、アクセス解析にこの知識を活かせると感じました。特に、複数の商材を取り扱う場合のデータ集計処理について、最終的に求める数値や、それをどのようにビジュアル化すれば良いのかを意識したデータ分析ができるようになりました。 感覚から論拠に? これまで感覚的に行っていたデータ処理について、なぜその手法を用いるのかを説明できるようになり、自信がつきました。今後は月次のアクセス状況の説明にも、より論拠をもって提案し、販売方針や経営判断に結びつけていければと考えています。
AIコーチング導線バナー

「分析 × 提案」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right