戦略思考入門

日常に潜む戦略の力

戦略思考の本質は? 私が最も印象に残ったのは、戦略思考が大きな目標を達成するためだけでなく、日々の業務を効率化し、目標までの道のりを最短にする普遍的な考え方であるという点です。目の前の業務に追われがちな状況でも、戦略思考を意識することで、限られた時間と資源を最大限に活用できると強く感じました。 外食業で差別化する? 例えば、外食産業で新メニュー開発の目標に取り組む際、闇雲にアイデアを出すのではなく、まず顧客のニーズを明確にし、自社の強みを洗い出し、競合との差別化ポイントを見つけることが大切です。その上で、試作、試食、改良の各工程にどれだけの時間とコストをかけるかを戦略的に計画し、プロセスを最短で進める工夫が必要だと理解しました。こうしたアプローチは、どの業界でも「仕事の型」として有効だと感じています。 営業戦略はどう練る? また、営業部のリーダーとして、戦略思考は自社や営業部の業務全般に活かせると確信しています。新規事業開発なら、市場の成長性や自社の強み、現状分析、資源配分をしっかり見極めることで、事業成功の確度を高めることができます。さらに、営業戦略では、目標顧客の設定や自社の価値、最適な営業手法、リソース配分を戦略的に考えることが重要です。特定の顧客層向けのサービスでは、顧客ニーズを正確に把握し、独自性のあるサービスを提供する戦略が不可欠であり、これには外食業でのマーケットイン思考と通じる部分があります。 販売戦略のコツは? 具体的な行動としては、まず販売促進計画において、市場分析、顧客ニーズ調査、競合分析を徹底し、その結果をもとにゴール、独自性、実施方法、予算(費用対効果も含む)を明確にします。これを週次で進捗確認し、ガントチャートで管理します。 顧客分析のポイントは? 次に、データに基づいた顧客セグメントを行い、各セグメントに最適な企画や営業手法を策定し、週間アクションプランに落とし込み、KPIを設定して進捗をモニタリングします。 部下育成に何が必要? さらに、部下育成では、戦略思考のフレームワークを教育し、OJTで実践させるとともに、定期的な1on1でフィードバックを実施します。部下にも週間アクションプランとガントチャートを作成させ、タイムマネジメント能力の向上を図りたいと考えています。 組織成長はどう実現? これらの取り組みを通じて、戦略思考を組織全体に浸透させ、目標達成の確度を高め、営業部や会社全体の成長に貢献していきたいと実感しています。

デザイン思考入門

デザイン思考で本質を見つめる

デザイン思考の目的は? デザイン思考とは、人間中心設計のアプローチを体系化し、どのようなステップを踏んで実践していくかを示すプロセスです。まず、ユーザーの行動や感情を観察し、実際に体験するなどして、彼らが抱える課題やニーズに共感し、本質的な問題を明らかにすることが重要です。その上で、数ある課題の中から、イノベーションに結びつく本質的な問題を見出すことがポイントとなります。 なぜ解決策が重要? また、解決策のためには、アイディアを幅広く発散した後、最適なものを選別、具体化し、ユーザーからのフィードバックを受けながら改善を重ねるプロセスが求められます。こうした試行錯誤や開発者とユーザーとのインタラクションにより、単なる技術やプロダクトアウトの発想ではなく、顧客体験から新しいイノベーションを創出することが可能となります。 調査の本質は何? 私が現在関わっている調査研究業務の支援では、直近で手がける調査企画において、本質的な課題が何かを再確認することが大切だと感じています。関係者へのヒアリングや検証方法の検討を通じ、解決策がどのように次の施策へと反映されるのかを、常に意識しながら作業を進めています。 議論はどこで迷う? 講義を受けた後の振り返りでは、現場で本質的な課題について合意を形成することが難しく、「とりあえず手がけられる解決策」へと流れてしまうことが多いと実感しました。誰に向けた施策を,どのタイムラインで求めるのかによってゴールが大きく変わるため、解決すべき対象を明確にし、本質を見失わないように議論を深めていく難しさを感じています。 行動促進の鍵は? 直近では、勤務している大学の研究室で実施しているプロジェクトに関連し、ある行為を習慣化してもらうための要因や、心情的なプラス効果がどう特定の行動促進につながるかを、デザイン思考の視点で分析することを模索しています。調査企画を進めるにあたり、仮説、調査設計、調査票設計の各段階で、本質的な課題がしっかりと捉えられているか再度検討したいと思います。 知識整理の実践は? さらに、デザイン思考について他書籍や学んだ内容を資料や文章としてアウトプットしながら、知識を整理・定着させたいと考えています。将来的には、医療現場でのインタビューや現場調査の際に、広く不満やニーズを収集し、そこから本質的な課題や心理的なインパクト、行動への制約を理解するためのプロセスにデザイン思考の要素を取り入れることが目標です。

データ・アナリティクス入門

データ分析が変えるビジネスの未来

分析を成功させるためには? ライブ授業を通して、次の3点を改めて整理できました。 まず、分析は比較によって成り立つということです。目的とアウトプットを明確にしてから分析に取り組むことで、闇雲な作業を避けることができます。 問題解決のステップをどう活用する? 次に、問題解決のステップ(What-Where-Why-How)の重要性についてです。当日の演習を通じて、これを実際に活用するイメージがつかめました。各ステップでは、目的を明確にし、ロジックツリーの活用や仮説設定、データ収集方法、データの見せ方などのポイントを整理しました。 データ分析から得た新たな発見とは? 最後に、分析のステップとして、検証したいことを具体的にし、仮説を立て、何と比較するかを意識しながらデータを集め、加工してビジュアル化することで、新たな発見が得られることを再確認しました。 また、データ分析の活用については以下の3点が挙げられます。 1. 企画立案時のマーケティングプロセスにおけるデータ活用 現状では、企画立案が現場の勘や経験に偏りがちですが、データを用いることで、より良い意思決定や施策運営につなげたいと考えています。さらに、他の施策との比較や過去のデータ分析を通じて課題点を洗い出し、マーケティングプロセスを改善していきます。 2. 施策振り返り時の検証 施策を振り返る際には、実績に対する問題や課題を明確にし、次の意思決定のために仮説を立てて検証することが重要です。 3. 課題解決に向けた活用 具体的な課題が提示されたときは、問題解決のステップと仮説検証の考え方を用いて取り組んでいきます。 学習方法の見直しがもたらした効果 これらの活用方法を通じて、アウトプットを進めていきたいと考えています。 さらに、本講座の復習をしっかり行い、学んだことを言語化しアウトプットできるようにし、問題解決ステップや仮説思考、フレームワークを実務に取り入れて練習します。自然に使いこなせるようになることを目指します。また、周辺知識の学習も継続的に進めていきます。データ活用にはクリティカルシンキングや伝える力、マーケティングに関する知識が必要で、今回自分に合った学習方法が見えたのも大きな収穫です。 今年度の目標達成に向けた取り組み 今年度は、施策の乱立を防ぎ、効率的な施策運営のために可視化データを作成し、リソースを他の業務に割けるようにしていきたいと思います。そして、掲げた目標に向けて努力を続けます。

データ・アナリティクス入門

ビジネス分析で得た新たな気づきと学び

分析はどう進める? 演習を通じて、実際のビジネスにおける分析思考を実践することができました。目的を明確にした分析や比較対象の明示、仮説を網羅的に洗い出し、可能性の高いものを検証していくプロセスを学びました。また、数値のばらつきを意識し、代表値に惑わされず、データの適切な見せ方についても考えることができました。 割合の見方は? 実数と割合の両方を把握することの重要性を理解しました。変化が現れる割合の内訳や、それが分析に値するかどうかを見極めることが求められますが、そこに対応が不十分な点に気付きました。無視してもよい場合は早めに切り捨てることで、分析の効率化につながることを学びました。 実績はどう比べる? 実績を比較する際には、既存データの見え方に惑わされないようにし、元データをしっかり把握することが重要です。逆に社内での説明時には、平均や代表値を用いつつ、その根拠となるデータもグラフで示し、データの精度を納得させるように努めたいと思います。平均、中央値、最頻値のどれを用いるか、慎重に考える必要があります。 不要データは除く? 効率化のために、不要な情報を最初に除外する判断が求められます。データの予測精度を上げるために複数の方法を試し、正確性に欠けるものを排除することが必要です。具体的には、当年実績予測を立てる際に、どの予測方法を採用するかを検討します。いくつかの手法を出し、例年の傾向を踏まえて選ぶといった作業が重要です。 課題は何でしょう? 分析における「比較」「目的」「課題」を明確にし続けることが重要であり、学びやインプットの時間を意識的に捻出することを続けたいと思います。特にExcelの実践スキルを高めることが課題であり、データ分析の本質や考え方についての理解を深めることができましたが、実践がまだ不足しています。業務の中でも学びの時間を作り、スキルを磨いていかなければなりません。 効率はどう上げる? データ分析を行う中で、「もっと効率的に行う方法や関数があるだろう」と感じながらも、業務の中では時間がとれないことがあります。学びの時間を構築し、最初は大変でも一度挑戦することが重要です。それを繰り返すことで、最終的な作業の効率化や精度の向上につながります。 多角的視点は? 最後のライブ講義で提示されたクリティカルシンキングのポイントを忘れずに意識しておきたいと思います。多面的に考えることを意識し、様々な人と話し、インプットを続けることが大切です。

データ・アナリティクス入門

複数仮説が照らす未来への一歩

仮説の意義は何? 仮説とは、ある論点に対する一時的な答えであり、課題解決のプロセスではまず「what(課題の特定)」を行い、その後「where(どこに問題があるか)」を考えることになります。 問題点はどこ? どこに問題があるかを検討する際、ポイントは以下の2点です。まず、必ず複数の仮説を立て、いずれかに固執しないようにします。次に、各仮説に網羅性を持たせることが重要です。今回の学びでは、例えば「レッスン内容」「レッスン代金」「立地や日時」「販促方法」といったサービスの各要素をあらゆる角度から洗い出すイメージでした。また、3Cや4Pといったフレームワークに触れることで新たな視点を得ることができました。 仮説の種類は? さらに、仮説には主に2種類があると学びました。ひとつは、ターゲット層の拡大などの結論に関する仮説、もうひとつは問題の原因や解決策を具体的に検討する問題解決の仮説です。後者は「where:問題の箇所を仮定する」「why:その原因を推測する」「how:解決方法を検討する」という順序で考え、筋道を立てる手法でした。 アンケート結果は? 社内で実施する教育後のアンケートでは、解答直後にアプリが提示する円グラフから、何が問題か(what)の部分を大まかに把握することができます。その後、回答者の属性や状況を踏まえ、できるだけ網羅的に「where」を洗い出すために仮説を検討します。4Pの観点では、教育内容、コスト(ここでは時間や労力)、実施方法や時間配分、連絡手段などを考慮した仮説となります。 事前整理の効果は? このように事前に分析の視点を整理しておくことで、設問作成もスムーズに進められ、必要なデータを最初から集めやすくなると感じました。 結論仮説の重要性は? また、業務で用いている仮説の中では、特に結論に関する仮説が重要であると改めて実感しました。直近で実施する意識調査の分析にあたっては、複数の結論の仮説を立て、その理由を深く考えた上で、使用するデータ項目を決定し、最終的に対策案を立案する流れを実践する予定です。最終提出前には、自分の仮説が他の仮説と矛盾しないかも確認し、他者の視点を意識することで、更なる精度向上を目指したいと思います。 実践活用はどう? また、6月に実施する教育後アンケートでは、これまでの気づきを反映し、より実践的な思考ツールとして活用できるよう努めていきたいと考えています。

マーケティング入門

リアルな本音、ここに集結

どうしてヒットした? ある事例から、長年にわたって衣料品の製造販売で培った強みを活かし、マスクやスーツパジャマといった製品がヒットした背景を学びました。時代や社会情勢の変化に伴う顧客ニーズの変動、さらには隠れたニーズの本質を捉え、スピード感をもって製品を市場に投入することや、キャッチ―で分かりやすいネーミングで用途を明示する戦略が功を奏したと理解しました。 本音は掴めたか? さらに、顧客の真のニーズを見極めるための手法として、行動観測やデプスインタビューの有効性を確認しました。ただし、デプスインタビューにおいては、報酬を提示することでかえって本音が引き出しにくくなる可能性がある点を学び、本音を言いやすくするには、事前の雑談を通じて信頼関係を構築することが有効であると再認識しました。また、商品やサービスの真のニーズを探る能力は、日常的な物事への想像を巡らせる癖によって養われるという点も実践していきたいと考えています。 どこにペインを感じる? また、顧客ニーズだけでなく、解決すべきペインポイントの特定も新規事業を検討する上で重要な要素です。事業化を実現するためには、曖昧なニーズではなく、実際にお金を使ってでも解決したいと感じる課題に注目することがビジネスの種になると理解しました。さらに、カスタマージャーニーの作成を通じて、ユーザー目線で体験を観察し、ペインポイントを特定して適切な解決策へと導くことが、事業化のポイントであると学びました。 信頼構築は上手? 実務は必ずしも課題解決型の事業ではないため、ペインポイントの深掘りは難しい面もありますが、自社の強みを生かし、顧客の隠れた真のニーズを探り出す姿勢を忘れずに取り組んでいきたいと考えています。特に、デプスインタビューにおいて報酬提示が本音を引き出しにくくするという点は、これまで気づいていなかった新たな学びとなりましたし、事業推進者が目の前にいるだけで本音が言いにくくなるという現状にも、改めて注意する必要があると認識しました。 やり方は確認した? ・行動観測では、実際に想定顧客の動きを観察し、ニーズを正確に把握することに努めます。 ・デプスインタビュー実施では、顧客の深い本音や改善点を引き出すため、信頼関係の構築に心がけながら取り組みます。 ・カスタマージャーニーの作成によって、顧客のタッチポイントや行動、思考をファクトベースで分析し、実態を正しく把握することを目指します。

デザイン思考入門

実践をカタチに!先輩の学び

仲間とどんな刺激? グループワークやLIVE授業では、仲間のプロトタイプを拝見し、紙で模型を作成したり、AIを活用して画像やプレゼン資料を作成する様子に大変刺激を受けました。体調不良でプロトタイプの準備が十分にできなかったことには申し訳なさも感じましたが、実際に目で確認することで、ユーザーがどのように使うか具体的にイメージでき、そこから自然に議論やフィードバックが生まれて次のプロトタイプへとつながっていくと実感しました。 店舗改善はどう進む? 店舗オペレーション改善業務においては、お客様や従業員といった各ユーザーを中心に「店舗のあるべき姿」を考える際、デザイン思考を取り入れていきたいと考えています。特に、以下のポイントを意識して実践しようと思います。 共感で何を掴む? まず、①共感~課題定義の段階では、インタビュー時にコーディングを活用し定性分析の精度を高めるとともに、全体向けに抽象的な解決策を求めるのではなく、ペルソナを設定して特定のニーズに絞ることで、明確で具体的な課題を定義します。また、カスタマージャーニーマップを用いてユーザーの思考や感情を可視化するため、自ら体験することが有効であると考えています。 発想で見える未来? 次に、②発想(イデーション)では、質より量を意識し、多くの新しいアイデアを生み出すために楽しい雰囲気でブレインストーミングを実施します。ダブルダイアモンドの考え方を念頭に、多くのアイデアを発散させるとともに、SCAMPER法を活用して他にない視点を積極的に取り入れるよう心がけます。 形はどう作る? そして、③プロトタイプ~テストの段階では、モノだけでなくサービスやオペレーションの動きなど、形のないものでも「まずは形にする」ことを重視します。プロトタイプはスピード感を持って繰り返し作成し、最初から完璧を求めずに改善を重ねることが大切だと感じています。 成果共有はどうする? 自身の業務では、インタビューや観察、ブレインストーミングの機会が多いため、今回学んだ視点や方法を早速取り入れ、メンバーへ共有していきたいと考えています。また、プロトタイプ作成において「まずは形にする」「スピーディーに」「繰り返し行う」という姿勢を、これまで以上に意識するためのスケジューリングから始めていくつもりです。楽しい環境で多くの発散を促すことが、新しいアイディアを生む鍵であり、その重要性をメンバーにも伝えていきたいと思います。

クリティカルシンキング入門

データ解析で見つけた学びの旅

情報をどう分解する? 情報を解析するためには、その情報を分解する方法を学びました。まず、解析する全体の情報を定義します。このとき、いつからいつまでの情報を扱うのかを確認することが重要です。その上で、単に機械的に分けるのではなく、なぜそのように分ける必要があるのかを考え、複数の視点から情報を分解します。一つの視点での分解では、漏れや重複がないかを確認します。また、時間や場所を考慮したプロセスの分解を行い、比率や分布、変化率などを表計算で工夫することで、情報の正確な分解が可能になります。最初は大まかに分解し、解像度を上げるように進めます。 医療データ分析のポイントは? 医療業界のデータ分析について、二つの要点を実施します。まず、新規紹介患者数の分析です。2018年から2024年を対象にし、この期間には特に2020年から2023年のコロナ禍の影響を考慮する必要があります。データを患者の年齢、性別、疾患別、および病院の診療科や紹介元医療機関の規模(病院、地域クリニック)、さらには緊急性で分解し、変化率を算出します。これにより、患者属性や病院要因が新規紹介患者数に与える影響を明らかにし、コロナ禍による変動を正確に分析します。 外来患者満足度はどう評価? 次に、外来患者満足度調査の分析を行います。毎年実施されるこの調査の結果をもとに、単年度での解析のみならず、経年変化を評価して改善の有無を把握します。回答者を年齢、性別、通院歴(初診、再診)で層別化し、通院プロセスを受付、診察、待ち時間、会計などに分解して感想を解析します。過去3年のデータを用いて変化率を算出し、患者満足度の変化を定量的に把握します。これにより、外来プロセスにおける成果や改善点の特定と評価を行います。 ① 新規紹介患者数の分析では、2018年から2024年のデータを収集します。収集の際には、層別分析ができるように、患者データをリストアップし、疾患分類や医療機関の規模の基準を明確にします。整理されたデータは、解析しやすいように専用シートにまとめ、欠損データの程度を確認して、その分解が有意義であるかどうかを評価します。 ② 外来患者満足度調査の分析では、過去3年のデータを収集し、年齢や性別、通院歴、通院プロセスに基づいて解析できるようデータを整理します。また、来年度以降のアンケート項目や質問順序の見直しを行い、「何を解析するべきか」「なぜ解析するのか」を明確にした上で設計を行います。

戦略思考入門

社内で即実践できるROI分析と戦略設計の秘訣

ROIの重要性とは? ROI(費用対効果)の考え方について学びました。私たちの社内では、案件ごとの稼働率をPowerBIなどを使って分析していますが、手元での試算も有効だと感じました。特に、自分の目の前の業務に活かすためには、小規模な試算も役立つと実感しました。 「捨てる」決断の基準は? 「捨てる」という決断については、客観的指標に基づいて行うことの重要性を学びました。例えば、ROIに基づく費用対効果が低い案件、取引先の成長率、取引規模、人件費などの数値データをもとに判断する必要があります。勘や経験に頼るのではなく、常に数値を基にした思考が必要だと認識しました。 なぜ本質を問い直すのか? 過去の手順や資料を無意識にコピペして使うのではなく、その本質を見つめ直すことが大切です。なぜこの手順が必要なのか、このデータは何のために用意しているのか、といった本質を問い直しながら作業を遂行することが、自身の作業効率を高め、さらに自身のROIを向上させることに繋がります。 トレードオフで優先すべきは? トレードオフの考え方についても学びました。「コスト・リーダーシップ戦略」か「差別化戦略」を重視するかの意思決定が重要です。バックオフィス業務においても、制度設計の際に費用対効果に注力すべきか、差別化戦略に注力すべきかの二つの視点を比較して戦略を考える機会があると感じました。戦略とは意思決定に基づいた行動計画を立てることですので、優先順位の設定と、個人と組織の視点をすり合わせることが重要です。最終的には、それらの最大化ポイントを見つけ、ブレークスルーとなる施策を検討していきたいと思います。 どのようにイシューを設定する? 作業を開始する前に、まずはイシューの設定を行います。過去の資料はあくまで参考にし、その時々の最適化を意識してアップデートを目指します。 数値で目的を明確にするには? 戦略を立てるためには、経営層とのディスカッションを通じて会社の意思確認を行い、目的を明確に引き出すことが必要です。客観的データに基づく情報を集め、それを元に判断を仰ぎます。感覚に頼らず、数値で具体的に意思を引き出す工夫を心がけます。 トレードオフの価値をどう探る? トレードオフの考え方は、相反する要素を並べることから生まれるのかもしれません。どんな「効用」があるのかという要素を洗い出す作業を今後も行っていきたいと思います。

データ・アナリティクス入門

データに宿る成長ストーリー

全体の流れはどう? 全体の流れとしては、WHAT→WHERE→WHY→HOWの順で進める点が印象に残りました。ただ単にデータを集めるのではなく、ひとつひとつの分析がストーリーとして意味を持つように、傾向をしっかり掴むことが大切だと感じました。 問題は明確か? まずWHATの段階では、今解決したい問題を明確にし、目標となる結論やイメージをもっておくことが重要です。何のためにデータを扱うのか、最初に目的をはっきりさせることで、分析全体の方向性が定まります。 どの候補を選ぶ? 次にWHEREのステップでは、複数の候補を出し、解決に役立ちそうなポイントやデータが取得可能かを検討します。単独で見る方法や、ツリー・組み合わせといった整理手法を用いながら、どの観点に重点を置くかを決めていくとよいでしょう。 原因は探れた? さらにWHYのフェーズでは、考えられる原因をできるだけ多く、また網羅的に仮説として挙げることが求められます。どんな要素が問題に影響を及ぼしているのか、広い視点で捉えることが分析の精度を高める鍵となります。 数値は何を示す? また、データを見る際には実数と比率の両面から代表値などの数値に注目し、明らかにすべきポイントを意識する必要があると再認識しました。どのデータが問題解決に直結するのかを見極めるために、どんな情報をどう加工すべきかを事前に考えておくことが重要です。 目的は明確に? 特に、日々の業務では「言語化しなくても大丈夫」という考えに陥りがちですが、データを扱う際には必ず「何をしたいのか」という目的を明確にすることが不可欠だと感じました。また、データ収集時にも最終的なアウトプットのイメージを持つことで、やみくもな収集を避け、意図のあるストーリーを先に構築する姿勢が大切です。 フォーマットは有効? 今後は、以下のフォーマットを活用していきます。まず、解決したい問題を最初に記述し、次にストーリーや考え方、データの集め方・分析方法の全体像を示します。その上で、WHAT、WHERE、WHY、HOWの各パートを用意して進める手法を徹底していきたいと思います。 仮説は多角的? 最後に、仮説思考における「複数と網羅」という視点が非常に印象的でした。インパクト、ギャップ、トレンド、ばらつき、パターンなど、さまざまな角度から物事を見る姿勢は、今後の成長に大いに役立つと感じています。

マーケティング入門

顧客目線で創る選ばれる魅力

顧客は何を求める? マーケティングにおいて、顧客中心で考える重要性と、思考の手順や考え方を学ぶことができました。自分が売りたいものを作るのではなく、顧客が本当に求めるものを提供することが鍵であり、顧客の悩みを解決する商品が魅力的な価値へと昇華していく点が印象的でした。 ターゲット選定は? まず、「誰に売るのか」を明確にすること、すなわち市場をセグメント化し、ターゲットを絞り、ポジショニングを行うSTPマーケティングの重要性を学びました。さらに、どんなに同じ商品であっても、ネーミングやパッケージ、キャッチコピーなどの見せ方を変えるだけで売り上げが大きく変動することに気づきました。 体験価値を感じる? また、顧客の体験に着目し、機能的な価値だけでなく情緒的な価値をいかに創出するかという視点も大切だと感じました。日常的に政治や経済、社会、テクノロジーの動向を意識しておくことが、マーケティング戦略を立てる際には非常に有効であると学びました。 戦略事例はどう? 具体的な事例を通じて、事業参入時にはターゲティングや顧客情報の深堀、プレゼンテーション、プロモーション、価格戦略、そして差別化戦略など、マクロとミクロの多方面から戦略を考える必要性を実感しました。 どう魅力を創る? さらに、ただ売るのではなく、顧客に「選ばれる」商品を作るためには、顧客が「欲しい」と感じる価値をどのように創造していくかが重要です。会話や行動の観察を通じて、心理や欲求を深く理解することが、商品の魅力を引き出す手がかりになります。 独自魅力は何故? デザインやネーミングにこだわり、既存の機能や価格だけではなく、「この商品だからこそ選びたい」という独自の魅力を打ち出すこともポイントです。さまざまな感性を取り入れることで、ブランドの世界観を明確に表現し、顧客に印象づけることができます。 競争をどう回避? 無駄な価格競争を避け、自社の強みを活かすためには、市場分析をフレームワークを用いてしっかりと目標を設定し、自社の強み同士を掛け合わせることで他社との差別化を図ることが求められます。 ブランド持続戦略は? 最後に、持続的なブランドの成長を実現するためには、顧客が求める価値を提供し続け、自然と選ばれるブランドを築く姿勢が必要です。競争に走るのではなく、独自の価値を磨き続けることが、長期的な利益獲得につながるとまとめることができます。

データ・アナリティクス入門

比較が拓くデータの新常識

データ比較はどう進める? 分析の基本原則は「比較」であり、まずはデータを比較する目的に立ち返ることが大切だと感じました。データ収集の前に仮説を設定し、その仮説を検証していくプロセスの中で、データをどのように加工して示すかという点が今回の学びのポイントでした。加工の視点としては、大きく代表値と散らばりの2つに分けられ、代表値には単純平均、加重平均、幾何平均、中央値があること、そして散らばりについては標準偏差で表現されることを学びました。 外れ値の対応はどうする? 今までは単純平均しか扱ったことがなく、重みを考慮した平均やべき乗を利用した手法は初めて触れる内容でした。また、平均値だけでは捉えきれない外れ値に対しては中央値を用いることで対応する方法がある点も新鮮でした。標準偏差については、なぜルートがつくのかという計算過程が理解でき、正規分布の場合にデータの約95%が±2個分の範囲に収まるという納得感を得ることができました。これまで平均を取るだけで思考が止まってしまっていた部分を、散らばりの視点からデータ活用の具体的なイメージに結び付けることができました。 移住データで何が見える? また、人口減少対策において活用される移住者データを分析することへの関心が高まりました。各市町村の移住者データを様々な属性で分析し、特に年齢や家族構成の散らばりを調べることで、どの施策に注力すべきかを推測するひとつの手法となり得ると感じています。現状、移住促進施策はUターン促進とIターン促進の大別がなされており、例えばUターンでは地元を想う集まりの取り組みを強化し、Iターンではボランティアや副業などにより継続的な関わりを持つ関係人口への支援を強化するという方針です。こうした大まかな区分に加え、より具体的な属性の分析が進むことで、移住理由を数値的に捉え、具体的な施策検討に役立てることができそうです。 今後の分析計画は? 今後は、所管部署に対して詳細な個別データの入手が可能かどうか問い合わせる予定です。データが手に入れば、エクセルを用いた分析に取り組みたいと思っています。特に県全体と沿岸地域の違いを明らかにすることで、一緒に施策を進める市町村の担当者や移住コーディネーターの方々の取り組みにも影響を与えられるのではないかと感じています。5月20日(火)に、所管部署の担当者が意見交換に来訪する予定のため、その際にデータ入手の依頼を進めるつもりです。

「分析 × ポイント」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right