データ・アナリティクス入門

データ分析の新たな視点を業務に活かす

データ比較の意義とは? 「分析は比較なり」という考え方の重要性を再認識しました。ビジネスにおける意思決定の際には、データを用いた提言を行う中で"比較対象"や"基準"を明確にしておくことが上流段階で大切であると感じています。 データの見せ方をどう工夫する? また、定量データの種類に応じて、適切な加工法やグラフの見せ方があることを学びました。普段から業務でプレゼンテーション資料を作成していますが、これまでは感覚的に数字を表示していました。今後は、実数で見せるべきものと割合で見せるべきものの区別を意識して、より効果的に可視化していきたいと思います。 分析の視点を資料にどう活かす? 資料作成の際、分析結果や二次情報を取りまとめるにあたり、「比較」や「数字の見せ方」といった、わかりやすい表現方法を意識していこうと考えています。また、業務委託先を選定する際に、選定基準や評価基準を整理するためにも、分析の観点を活用することができると感じました。 新たな観点を業務にどう適用する? これまで意識してこなかった新たな観点を業務に適用するために、まず業務の目的をしっかりと立ち止まって整理し、可視化することを習慣化したいと思います。これにより、意思決定を促進するためのデータ活用の余地があるかどうかを判断し、適切な判断ポイントを組み込むことができると考えています。

戦略思考入門

実務に生かす学びの一歩

授業内容をどう実務化? 授業で学んだ内容を業務にどう活かすかを考える過程で、配車アプリと中古車販売事業のシナジーに関して、まだ自分の視野が狭く、知識が十分に定着していないと痛感しました。そのため、基礎から復習し直す必要があると感じています。 動画学習は何を教える? 動画学習では、規模の経済性において、生産量が月ごとに変動する場合、調整の仕方によっては不経済になる可能性があるという点が新たな学びとなりました。また、習熟効果に関しては、問い合わせに対応する際の時間差から、チーム内でのスキルのばらつきを感じることができ、これをどう改善していくかという対策の重要性を再認識しました。 具体策はどう進める? 具体的な取り組みとして、習熟効果を高めるために、まずは定例会議で事例の共有とポイントの説明を行うこと、また、よくある質問やその回答をまとめた資料を作成し、いつでも参照できる環境を整えることを計画しています。これにより、チーム全体の対応力を底上げできると考えています。 連携で成果はどう? さらに、範囲の経済性については、他部署と共同で展示会などを行う際に得られるメリットを整理し、具体的な提案ができるよう、事前に自社のバリューチェーンを再分析することを進めています。こうした取り組みを通じ、実務に直結する形で学びを業務に生かしていきたいと思います。

クリティカルシンキング入門

数字の捉え方を変える新発見への旅

数字の切り口をどう捉える? 数字の切り口には複数のパターンがあり、その見え方は切り方次第で変わるということがよく理解できました。しかし、切り口によっては解釈を誤る可能性もあるため、それをどのように防ぐかが重要なポイントだと感じました。 フレームワーク活用のヒントは? 分解の方法として3つのフレームワークが存在し、特にプロセスで切り分ける方法は今後意識して取り入れたいと思います。これらが効果を発揮するためには、ある程度の基礎知識やMECEといった考え方が必要であり、体系的に知識やスキルを習得する必要性を感じました。 管理会計で何を見極める? 現在の職務において、既存事業の理解には、売上構成などを管理会計的に分析することが重要だと考えています。ここでGailという手法が活用できると思いました。最初に事業を分解して特性を理解し、その特性から課題を洗い出していきたいと考えています。そして、今後の社会情勢と照らし合わせて事業の方向性を整理したいです。 整理と議論はどう進める? まずは既存事業部の情報収集を始め、その一方で管理会計の知識を身につけ、管理会計としてのプロセスを整理し、フォーマットを作成してみたいと思います。これにより自身の事業理解を深め、経験者とディスカッションを行い、現状の事業課題や今後の事業戦略に反映したいと考えています。

アカウンティング入門

経営の数字に秘めた物語

貸借対照表の役割は? 貸借対照表は、お金の使い道と調達方法が表裏一体であることを両側面から確認できる重要な資料です。まず、資産はその変動性によって「流動資産」と「固定資産」に分けられ、1年以内に変動する可能性があるかどうかで判断されます。資産の金額が大きいほど会社の規模は示されますが、内訳や構成を確認することで、その資産がどの程度安定しているのかを見極めることができます。 流動資産と固定資産の違いは? また、企業の業種やビジネスモデルにより、固定資産と流動資産の比率は大きく異なります。初期投資が必要な業界では固定資産の割合が高くなる傾向にある一方で、流動性を重視する企業では流動資産の比率が高くなることが多いです。こうした視点から、勘定科目の設定やインポートを行う際、自身でその科目が流動なのか固定なのかを推測できるようになると、より深い理解につながります。 他社比較で見るポイントは? さらに、自社と競合他社の貸借対照表を比較することで、純資産と負債、流動資産と固定資産の割合や金額の規模感、さらには自己資本比率といった数値から企業の健全性や経営の安定度を確認することができます。決算書を細かく分析することで、たとえ赤字が出た場合でも、企業が存続できる要因や、市場の変動に対してどの程度影響を受けやすいのかを把握する手がかりとなるでしょう。

戦略思考入門

戦略思考で新製品評価を徹底分析

フレームワーク活用の意義とは? 戦略のフレームワークに関する知識を整理し、それを活用することで視野狭窄を避けるとともに、分析視点の抜け漏れを防げることが理解できました。また、戦略が自身の業務だけでなく人生設計にも応用できることを学びました。ただし、フレームワークの活用は戦略の第一歩に過ぎず、ユニークな戦略を立案するためには地道に考え抜くしかないことも再認識しました。 教授の意見をどう活かす? 自社の医療機器の新製品に対する教授からの評価を本国に伝える際には、教授のコメントをそのまま伝えるのではなく、戦略的に分析してから伝えることが重要です。教授の影響力や専門、属性情報に基づいてフィードバックの重要性を正当化し、指摘された改善ポイントを重要度と難度の二軸で分類し、優先順位を付けることが求められます。また、40名のドクターに新製品を使用してもらい、アンケートを集めましたが、ミクロな情報をマクロな視点で整理するために、戦略的な思考で分析していきたいと思います。 新製品評価の次のステップは? 新製品の評価については、まず社内のメンバーと方向性を決定し、その後、教授からのフィードバックを9月中旬までに分析し、本国と今後のアクションについて合意を得る予定です。さらに、40名の先生から得られたアンケート回答に基づき、ポジショニング戦略を立案します。

データ・アナリティクス入門

分析力で交渉力を高める秘訣

比較の重要性をどう捉える? 分析の本質は比較にあります。条件を揃えて比較することが重要であり、この際、目の前の情報に引っ張られないよう注意が必要です。また、目の前にないものについても、目的に照らして何と何を比較するべきかを見極めることが重要です。最終的に、分析によって明らかにしたいことを明確にし、その目的に沿った比較対象を選定することが求められます。 交渉をどう深める? 私の場合、データを直接使用する仕事ではありません。しかし、交渉事の割合が多いため、この考え方を活用したいと考えています。例えば、説明や交渉時に事実を列挙することは重要ですが、それだけでなく、「もしそれがなかったらどうだろう?」といった異なる前提を考慮に入れた論理構成を加えることで、説明や交渉に深みを持たせたいと考えています。 分析に必要な視点とは? 抑えるべきポイントは以下の通りです。まず、目的を明確にすることです。今までの行動パターンでは、調べて比較するというアクションをとっていましたが、結果的にただ彷徨い、同じ場所をぐるぐるしているだけでした。 見えない情報をどう扱う? さらに、目に見えない情報も考慮する必要があります。目の前の情報だけで判断すると、ありきたりで的外れな結論に至ってしまうことがあります。正しい分析方法を身に付けたいと強く思っています。

クリティカルシンキング入門

伝わる!数字×図表のプレゼン術

ビジネスで何が伝わる? あらゆるビジネスシーンで、相手に情報を伝え、行動を促すためのノウハウを学びました。図による伝達と、文章での表現それぞれのポイントを体系的に理解できたことが大きな収穫です。 どう伝えれば効果的? 図を用いて情報を伝える際は、以前学んだ「数字に意味を持たせる」という考え方を意識します。図や表を作成する際には、何を目的に、どの情報を伝えたいのか、そしてその結果として相手にどう変化してほしいのかを想像することが重要だと感じました。また、スライド作成時には、体裁を丁寧に整える基本的なことの重要性を改めて確認しました。 職場で活かせる? 現職では、営業やマーケティングの数字を分析し報告する機会が多いため、今回学んだノウハウはあらゆるプレゼンテーションで活かせると確信しています。さらに、ビジネスライティングは、たとえ職を離れても生涯にわたって必要な能力であるため、日々実践を重ねていきたいと思います。 コミュニケーションの工夫は? 毎週の経営報告においては、作成したスライドで何を伝えたいのか、相手がどのような状態になってほしいのか、そして何を求めているのかを常に意識するように努めます。部下とのコミュニケーションにおいても、目的や手法、丁寧さを重視し、より伝わるコミュニケーションを実現していきたいと考えています。

データ・アナリティクス入門

数字が語る驚きの実態

なぜ多角的に見る? データ分析は、ただデータを見るだけでなく、さまざまな角度から比較し、分析することが重要だと感じました。数字にまとめたり、数式を用いて関係性を明らかにしたりすることで、隠れた事実に気付くことができます。また、代表値や分布、平均値と標準偏差など、基礎的な手法を通じてデータ全体の傾向を掴むことが効果的です。 どの代表値が適切? 社内で扱うデータはボリュームが大きいことが多いため、比較の際には代表値に注目する場面が多かったです。これまでは直感的に平均値や中央値を代表値としていたものの、データ全体の特徴を踏まえてどの代表値を採用すべきか再検討する必要があると学びました。さらに、業務ではデータをマトリックスにまとめたり、グラフや分布図にして視覚的に把握できる形に変換することで、数字が伝える実態をより明確に捉えることができると実感しました。 何を比較検証すべき? 大量のデータを取り扱う際は、さまざまな代表値の算出方法を試すこと、また平均値においても単純平均以外のパターンが存在することを忘れずに検証することが大切だと感じました。データを可視化する際には、「何を見たいのか」「どこを比較するのか」といった目的を明確にした上で、見たい事象が浮かび上がるよう工夫することが、今後の分析業務において重要なポイントだと再認識しました。

データ・アナリティクス入門

実践で磨く、A/Bテストの秘訣

情報伝達の大切さは? 今回の学びを通して、情報が漏れなく重複なく伝わることの大切さを改めて認識しました。目的を見失わず、必要なポイントを抑えることの重要性が意識されました。 A/Bテストの効果は? 特に、A/Bテストの活用は検証のしやすさや結果の共有において分かりやすい手法であると感じました。一定の制限をかけ、絞り込むことで方向性を見失わずに進める工夫にも気づきました。 広告運用のコツは? 実務でgoogle広告を活用する中で、A/Bテストの形式で構成され、AIが複数のセンテンスを組み合わせることで広告の最適化を図る仕組みを再認識しました。小さな変更を繰り返すアプローチは、実際にすぐ活用できる効果的な方法だと実感しています。 プロモーションはどう? また、運用しているプロモーションに関しては、早速実践に移し、チーム内で共有して理解を深めることが重要だと感じました。取得したデータをもとに分析し、意見を擦り合わせることで、より精度の高い施策へと進化させていく予定です。 チームでの改善は? 今後は、A/Bテストの手法をさらに高度なものにグレードアップすることも視野に入れています。ただし、個々のスキルに偏ることなく、チーム全体でアウトプットの場を設け、ディスカッションを重ねるよう取り組んでいきたいと考えています。

クリティカルシンキング入門

切り口で解く学びと発見

どう分解する? データを分解して理解するためには、対象を個々の要素に分けることが重要です。特に、When、Who、Whatといった切り口を活用することで、分析がスムーズに進むと感じました。問題に直面した際には、まずこれらの視点に当てはめることを意識する点が良いと思います。 分析は広がる? 今回の総評では、具体的な手法としてWhen、Who、Whatを用いながらデータを分解するアプローチが評価されています。さらに、より多角的な視点を持つことで、分析の幅が一層広がる可能性があると感じました。 他の切り口は? また、思考を深めるための問いとして、WHO、WHAT、WHEN以外にどのような切り口が考えられるか、またMECEに分解する際に意識すべきポイントは何かといった疑問が提示されました。これらの問いかけは、多面的にデータを観察する習慣を身につける上で大切だと考えます。 管理法はどう? プロジェクト管理においても、この手法は進捗管理や不具合管理に活かせるでしょう。既に使用しているツールの補助として、まずはWhen、Who、Whatを当てはめることを意識し、課題の抽出に役立てることができます。また、グラフ化も可能なデータ収集を心がけ、評価のポイントを事前に決めることで、より効果的な分析が期待できるでしょう。

デザイン思考入門

会話で掘り起こす本音の真実

定性分析の意義は何? 定性分析という言葉は以前から耳にしていましたが、具体的な内容についてはあまり理解していなかったため、普段使っている手法ということもあり、大まかなイメージは持っていました。日常的に顧客と会話する中で、提供しているサービスに対する意見や不満を雑談の中からヒアリングし、複数の顧客の声を集めることで共通の改善ポイントを見つけ出してきました。フレームワーク化はしていなかったため、これを機に試してみることにしました。 顧客の反応はどう? また、ある顧客で認識した課題を、別の顧客にも「こういった課題はありませんか」と確認することがあります。その結果、多くの方から「あ、そうだね」と言われ、潜在的な問題を掘り起こせたような気がする反面、半ば無理やりに認識させたのではないかと感じることもあり、共感フェーズの難しさを改めて実感しました。 対応策は進むか? さらに、特定の条件下にある利用者の特定シチュエーションでの課題に焦点を当てる重要性は理解しているものの、実際にその課題に対して具体的な対応策を講じるまでには至っていません。対象となるケースが想定以上に少ないため、コストメリット的にも実施判断にまで至らないのが現状です。今後は、次のフェーズで小規模なテストなどを通じ、解決策を模索していければと考えています。

データ・アナリティクス入門

データで挑む問題解決の旅

問題解決の順序はどう? 問題解決のステップとして、「What, Where, Why, How」の順序で進めることが重要です。やみくもに分析を開始するのではなく、順序立てて進め、数字に基づいたストーリーを構築することが求められます。データ分析においては、比較対象をはっきりさせ、集めたデータをしっかりと加工し、原因を特定する努力が重要です。 採用改善はどう進める? 採用手法を模索する中で、SNSや自社サイトの採用ページの改善を進めるには、コンバージョン率やファネル分析を活用して、離脱ポイントを特定することが有効だと考えました。それにより、コンテンツの見直しも可能になります。 企画提案の進め方は? このように分析を進める際は、初めに仮説を立て、結論のイメージを持つことが肝要です。何のために分析をするのか目的を明確にし、課題を特定するステップで進行することが大切です。特に、来年度に向けての企画提案の時期においては、データを活用して説得力のある資料を作成したいと考えています。そのために、データ分析の手法を復習し、自分自身の知識として確立する必要があります。また、データをさらに深く理解するためには、エクセルの関数についても知識を深めることが必要そうです。これについては、AIを活用し、日々学び続けたいと思っています。

「分析 × ポイント」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right