データ・アナリティクス入門

平均と中央値が紡ぐ成長ストーリー

なぜルールが必要? データを取り扱う際は、一定のルールに則り全体の目線をそろえることで、伝えたい内容が明確になります。そのため、データからメッセージや仮説を引き出す際には、適切な代表値を選択することが重要です。たとえば、平均値については、単純平均や幾何平均など計算法の違いを意識し、正確な表現を心がける必要があります。 どんな手法が有効? また、データのばらつきを示すには、関数的な手法を用いてビジュアル化する方法が効果的です。舞台の単月入場率を年間の数字に換算する場合、各月の値を単純に平均するのではなく、正確な情報を伝えるために公演数で重みづけした加重平均を用いると良いでしょう。さらに、チケット単価のばらつきにより生じる外れ値の可能性を考慮し、中央値も併せて検討することが求められます。 分析に新たな示唆は? 日々の分析においては、平均値だけに頼らず中央値の視点も取り入れることで、その乖離から新たな示唆が得られるかを考えることが大切です。数字の集計表としてまとめるだけでなく、ビジュアル化によって情報の具体性と理解しやすさを高め、平均という言葉の使い方にも注意を払う必要があります。

データ・アナリティクス入門

受講生の挑戦史!仮説の軌跡

視野はどう広げる? 仮説を立てる際には、3Cや4Pといったフレームワークを活用することで、多角的な視点から物事を捉え、広い視野で考察することができます。まずは、現状の事象を一方的に決めつけず、可能な切り口をいくつも模索することが大切です。 データはどう活かす? その上で、仮説を裏付ける目的でデータを収集し、実際の状況と照らし合わせながら検証を進めます。これにより、問題点の所在が明確になり、その原因を把握することができ、より効果的な改善策に結びつけることが可能です。 戦略はどう選ぶ? また、商品ごとの価格政策や販売戦略においては、取引先ごとに異なるアプローチが必要となる場合もあります。そのような場合、十分な根拠をもとに仮説を立て、データをもって検証することで、精度の高い意思決定を迅速に行えるようになります。 どう多角的に考える? 日々の業務では、反射的な判断や行動に流されることなく、まずは多様な観点から事象を分析し、3Cや4Pの視点を取り入れて仮説を立てることが求められます。こうしたプロセスが、より論理的かつ具体的な改善策の検討につながるでしょう。

アカウンティング入門

問いが導く業界と成長へのヒント

業界理解は十分ですか? 一見理解しやすいと思われがちな業界であっても、その特性を十分に理解しなければ、売上や費用の数字を正しく読み解くことは難しいと実感しました。各業界の事業特性を踏まえることが、財務諸表の分析能力を向上させる鍵であると感じています。 問いで成長できるでしょうか? また、学習方法として「問いを受け、考える瞬間こそが成長の起点である」という点に気づかされ、今後の学びに大きな影響を与えていると感じました。 比較分析の基本は何でしょう? 基礎面では、自身の業界や関連業種間での企業比較分析を日々の業務に活かすことで、アカウンティングの基本的な活用方法を確立していきたいと思います。 経済全体の見方はできていますか? さらに、ビジネスマンとして様々な業種を対象に、社会経済全体の動向を理解する視点を広げる必要性を強く感じました。そのためには、各業界の事業特性や直面している社会課題を正しく把握することが不可欠です。今後は、継続して学習プログラムを受講することや、新聞などの資材を利用して社会経済全般の知見を深める取り組みを進めていきたいと考えています。

クリティカルシンキング入門

多角的思考で生まれる新しいアイディアの発見

クリティカルシンキングの重要性とは? クリティカルシンキングの土台である多角的なものの見方は、非常に重要です。常に自分の思考と向き合うことが求められ、これを通じて一つの要素でも多角的に考えることができ、アイディアがたくさん生まれると感じました。出てきた考えや要素をどのようにまとめるかについても考えていきたいです。 提案をどう効果的に検討する? お客様への提案を考える際、どのような内容で考えるべきかを検討します。考えすぎて回答に詰まるため、整理の方法を工夫する必要があります。アイディアを洗い出し、提案を考える過程で、日々の業務の振り返りを怠らず、得意なパターンを見つけたり、工夫の余地を発見する努力が必要です。 提案内容の可視化はなぜ重要? 提案内容の可視化が重要です。要素を洗い出し、ストーリーを立てて説明することが求められます。パターン化と工夫を考慮し、ワクワクを優先することも大切です。テンプレートを加工して利用し、提案を一から考えるのは難しいため、何かヒントを組み合わせることが有効です。また、自分だけの勝ち筋や特徴を強調できるようにすることも心がけています。

戦略思考入門

差別化戦略を考えるヒント

顧客の価値はどう見極める? ターゲットとなる顧客にとって、価値のあるものをしっかりと捉えることが重要です。顧客が魅力を感じなければ、その差別化は意味をなさないからです。また、顧客視点で誰が競合となり得るか、思わぬ業界や業種が競合になる可能性も考慮する必要があります。さらに、実現可能で持続可能な差別化、すなわち他社にすぐ真似されない対策を意識して差別化施策を打ち出すべきです。 営業とマーケティングはどう活かす? 営業においては、顧客が求めているものを把握し、他社の差別化ポイントを考慮しつつ、自社の差別化要素を整理することが求められます。この情報を踏まえた上で日々の営業活動や商談に取り組むことが重要です。マーケティング部門でも、新商品や新サービス・ソリューションを開発する際に、今回学んだ差別化の考え方が役立つ場面がありそうです。 自身の業務にすぐ活かすのは難しいかもしれませんが、自社の商品やサービスを考える際には、顧客にとって価値があるか、他社と比較してどうか(真似されにくいか、既に行われているか、その規模感はどうか)を常に意識する習慣をつけることが大切です。

クリティカルシンキング入門

思考を整理する技術を身につける喜び

思考を整理するコツは? 分解を行うことで、自分自身の思考を整理することができることを学びました。また、MECE(Mutually Exclusive, Collectively Exhaustive)の概念や考え方についても学びました。日々の考え事に漏れや重複があることに気付けたのは大きな収穫です。これからは、事象の全体像を捉え、どのような切り口で分解すれば良いかを考えながら行動していきたいと思います。 新たな空間プロデュースで活用するには? 特に新しい空間をプロデュースする際に、ガイドラインの制定にこの考え方を活用する予定です。ルール作成の対象の全体像を把握し、どのような切り口で分解し、各個別事象に対してどのようなルール設定が必要かを取り組んでいきたいと考えています。 図式化で思考を深めるには? さらに、思考の枠組みをパワーポイントなどで図式化しながら整理していきたいです。施設の全体像を理解し、それを分ける適切な切り口をまずは案として出し、考える。その上で、現れた個別事象に対し、どのようなルールアサインが適切かを検討していきたいと思います。

データ・アナリティクス入門

柔軟な仮説が未来を拓く

初期仮説の危険性は? 仮説は初めから決めつけず、幅広い視点で持つことが大切です。あらかじめ仮説を立て、それに基づいて検証するため、もし初期の仮説に誤りがあれば、その後の工程にも大きな影響が出る可能性があります。 計画的データ収集は? また、仮説を検証する際には、必要なデータを計画的に収集することが求められます。必ずしも全ての情報が揃っているとは限らないため、誰にどのように情報を収集するか、目的に沿って進める必要があります。 売上データで何発見? 日々の業務で売上データを見る中で、発生した事象に対してまずは幅広く仮説を出すことが有効だと感じました。これまで漠然とした感覚で仮説の検証に取り組んでいたため、今後はより意識的に取り組むことが必要だと思います。 周囲の意見は頼も? 仮説を立てる際は、自分一人で考えるのではなく、周囲のメンバーからの意見も取り入れ、網羅性を高めるよう努めます。過去の経験や先入観をなるべく排除し、フラットな視点で物事を俯瞰することを心がけるとともに、仮説検証の目的を踏まえて最適なデータ収集方法を選択していきます。

データ・アナリティクス入門

変化を捉え、採用戦略の新しい視点を獲得

「分析は比較なり」とは? 「分析は比較なり」という言葉が強く印象に残りました。これまで、分析を行う際にはひとつの情報やデータから何かを導き出そうとすることに注力しがちでした。しかし、適切な対象と比較を行うことが重要であることに改めて気づかされました。データ加工が目的化し、肝心な分析がおろそかにならないよう、「何のための分析なのか」を明確にすることが大切だと学びました。 採用戦略にデータ分析をどう活かす? また、この知見は顧客企業の採用戦略を考える際にも活用できると感じました。顧客が抱える採用課題を解決するためには、現状データ(求職者の動向や志向性など)をもとにボトルネックを分析する必要があります。目標と現状の差を正確に把握するために、今回の学びを活かしてデータ分析を行いたいです。 自分なりの仮説が鍵? さらに、顧客の課題に対して自分なりの仮説を立てること、分析の目的を明確にすることを意識していきたいです。採用市場は日々変化していますが、その変化を「仕方がないこと」と捉えるのではなく、変化の原因や市場の動きを常に考えていくことが重要です。

クリティカルシンキング入門

分析の新視点でスキルを磨く挑戦

データ分析への新たな視点は? 私は日々の業務でデータを分析する機会がありますが、今まで同じ手法で行ってきたことに気づかされ、反省しました。データ分析においては多様な視点で考えることが重要であり、仮説を立てつつデータを加工・分解し、結果が異なる場合には新たな仮説を構築して異なる視点から再チャレンジする。そうしたトライアンドエラーを繰り返し、データ分析のスキルを磨きたいと思います。 データ理解を深める挑戦 普段の業務で目にするデータも、ただ眺めて終わりにせず、自分で加工して理解や洞察を深めることに挑戦したいです。また、具体的なデータ分析業務に携わる機会を活かし、仮説立てとデータ加工のサイクルを繰り返し、分析スキルや仮説構築の感度を高めたいと考えています。 ニュースデータでのスキル向上 仕事だけでなく、ニュースや新聞で出会うデータにも自分なりに加工する挑戦をしてみたいと思います。ニュースに掲載されるデータの前提や、割合を示している場合の分母と分子の関係についても、MECEの視点で注意深く検討する癖をつけていきたいと考えています。

戦略思考入門

不要を捨てて効率化!振り返りの心得

不要なものを捨てるか? 戦略における不要なものを捨てることの重要性は、以下のポイントに集約されます。まず、捨てることで顧客の利便性が向上する場合があります。また、昔からの惰性に流されずに変化を取り入れることも大切です。さらに、専門的な分野は専門家に任せるべきである、という考えも重要です。 トレードオフの原因は? トレードオフが発生する場面について考えると、限られた資源や時間の不足が一因となります。また、ある要素と別の要素が互いに排他関係にある場合にもトレードオフは発生します。 トレードオフの対処法は? トレードオフが発生した場合の対処法としては、効用の最大化が挙げられます。さらに、組織やプロジェクトの進むべき方向性を明確にすることも対策の一つです。 日々の業務をどう効率化する? 日々の業務プロセスやルーチンワークについて、何となく続けている惰性の部分を見直すことで、効率化や最適化が図れます。私は、これまで学んだことを活かして、まずは不要な作業をなくせないかという観点から業務の改善に取り組みたいと考えています。

クリティカルシンキング入門

毎日の振り返りが未来を創る

今までの学びはどう? 今まで学んできた知識を多角的に活かす課題でした。一つ一つの学び自体は決して難しいものではありませんが、実際に身についているかというと、まだもう一歩という印象を受けました。日常的に自分の作成した資料や業務の進め方を振り返り、チェックすることが必要だと感じています。 提案と報告はどうなる? 企画の提案や上司への報告など、あらゆる場面で今回の学びを活用できるはずです。目的や課題を明確にし、相手の立場に立って考える姿勢を、日々の業務の中で当たり前にできるようになりたいと思います。また、重要なポイントはすぐに確認できる場所に貼っておき、仕事中にすぐ参照できるよう工夫したいと考えています。 知識は定着してる? 学習が終わっただけでは知識は定着しません。今後、実際に使う機会を設け、以下の方法で知識の定着に努めます。まず、重要なポイントをすぐ参照できるよう整備すること。次に、動画や資料を3日後、1週間後、1ヶ月後に復習すること。そして、可能な機会には後輩や子供に教えることで、自らの理解を深めたいと思います。

マーケティング入門

見つける!なりたい自分への道

満足システムの意義は? 自分もユーザも満足できるシステムを開発・提供する重要性に、改めて気付かされました。現在目指しているキャリアは一般的には成長と捉えられていますが、自分自身にとって本当に成長なのか、真剣に考える必要があると感じます。どんな自分になりたいのか、日々の業務に追われて見落としがちですが、意識的に時間を取って考えることは大切です。 自己評価の方法は? 今回、ナノ単科の学習を通して、今一度自身の在り方を見直す機会を得ました。これを機に、今後も定期的に自己評価を行うための仕掛けが必要だと考えています。例えば、毎月リマインダーを設定し、なりたい自分像や現在の進捗状況を文字にして記録する方法を始めようと思います。 なりたい自分って何? 「なりたい自分はどんな人物か」「なぜそのように思うのか」「これまでの変化の中で、どのような出来事があったのか」「なりたい自分に近づくために今日から何をするのか」―こうした問いを自分自身に投げかけ、小さなことでも具体的に書き出していくことが、今後の成長に繋がると信じています。

「考える × 日々」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right