クリティカルシンキング入門

データから読み解く顧客満足度の秘密

数字の分析で気をつけるべき点は? 数字を使用して分析する際には、与えられた数字をただ羅列するのではなく、状況に応じて自分で欄を増やしたり工夫をすることが求められます。どのような傾向があるかを分解する際には、仮説を立てるために意味のある分け方をすることが重要です。その際には、情報が漏れたり重複したりしないように注意が必要です。また、ひとつの傾向が見えたとしても、2つ目、3つ目の異なる傾向が存在しないか考えることが大切です。 商談の不満点はどこに? お客様との商談において、どの部分に不満を抱いているのかを分析することに挑戦したいと思います。例えば、お客様に会う前の段階なのか、会った時なのか、などの具体的な場面を考えます。不満の傾向が明らかになった場合、法人であれば業種や従業員数、個人であれば家族構成や年齢など、さらに詳細に検討して仮説を立て、それを実践に移してみたいと考えています。 顧客分析はどう進める? まず、これまでにご契約いただいたお客様や断られたお客様がどのような方であるのかを表にまとめます。そして、ご契約いただいたお客様にはどのような共通の傾向があるのか、断られたお客様にはどのような特徴があるのかを分析してみるつもりです。

アカウンティング入門

数字が示す経営判断のヒント

財務への洞察は? これまで財務諸表の作成業務に携わってきたため、今回の内容自体に新たな発見はあまりありませんでした。しかし、「財務諸表を利用して経営判断を行う」という視点の重要性を改めて実感する機会となりました。これからは、数字が示す意味をより深く理解し、その知見を経営に活かしていく姿勢を大切にしていきたいと感じています。財務情報を単なる報告書類ではなく、経営の意思決定を支える貴重なツールとして活用することが、自己の成長に直結していると実感しました。 説明をどう伝える? また、今後の取り組みとしては、まず全社ミーティングにおいて財務状況を社員に丁寧に説明する場面で、数字の意味や背景をわかりやすく伝えていくことに注力します。さらに、B/SやP/Lの数字が何を表しているのか、会計に直接関わらない社員にも理解できるよう工夫を重ね、説明の質を向上させることを目指します。 数字の意味を考える? 最後に、自分自身が財務指標を読む際には、常に「この数字は現場や社員にとってどのような意味を持つのか」を考える習慣を身につけるよう努めます。社内ミーティングの前には、視覚的に理解しやすい簡単なスライドや図解を作成するなど、工夫を凝らしていく所存です。

データ・アナリティクス入門

平均だけじゃないデータの魅力

数字加工のコツは? データ分析のアプローチにおいて、「数字を加工するためのポイント」を学びました。これまで単純平均だけに頼っていた自分に対し、加重平均、幾何平均、中央値など、分析の目的に応じた代表値の捉え方があることを知り、大きな気づきとなりました。 散らばりの見方は? また、標準偏差によりデータの散らばりを見る方法についても、漠然としたイメージから、基本的な考え方や2SDルールの説明を受けることで、より明確に理解できるようになりました。 顧客単価の確認は? 現在、一定の条件下で顧客単価を分析しており、単純平均以外の視点やバラつきの観点からの分析に着目し、これまで手つかずだった部分の解明に取り組む予定です。その際、前回学んだ分析の目的を明確にし、仮説を立てながら検証する手法を実践したいと考えています。 実践方法はどう? 具体的には、以下の点を意識して進めます。まず、初回の学びに沿った手順を振り返りながら、地道に分析に取り組むこと。次に、仮説を立てる際には、数字をざっくりとビジュアル化して全体像を把握すること。そして、代表値や散らばりに焦点を当てた分析を行い、見やすく伝わりやすいグラフなどのビジュアル化にも努めます。

アカウンティング入門

数字の裏側に光る実践の知恵

本業の利益って何? 営業利益は本業で得られる収益と費用の差額、つまり本業での儲けを示す指標です。一方、経常利益は本業以外の収益や費用も含め、事業全体として持続的に利益が出ているかを判断する材料となります。最終利益である純利益は、これら一連の利益計算の総括として位置づけられます。 損益項目の違いは? 企業ごとに提供する価値やビジネスモデル、コンセプトの違いから、各損益項目の特徴や数値は異なるため、PL(損益計算書)をもとに自社の強みや弱みについて仮説を立て、分析することが求められます。 計画は合致している? まず、所属部門が策定する年間実施計画について、取組アイテムや目標、スケジュールが自社のPLと合致しているかを確認することが重要です。また、担当するプロジェクトの商談においては、ターゲット価格から原価、利益までを検討する際に、自社の決算説明会の内容をしっかり理解し、部下にもその要点が伝わるように説明する必要があります。 他業界の価値は? さらに、製造業に勤務している立場から、製造業以外の業種が提供している価値とPLとの相関関係を見直し、どのような特徴として表れているのかを分析してみることも有益です。

データ・アナリティクス入門

平均を超えた数字の物語

分析の精度をどう? 普段の分析では平均値に頼ることが多いですが、データのばらつきを十分に表現できない点が印象に残りました。標準偏差はこのばらつきを把握するための指標であり、分析の精度を高めるためにぜひ取り入れるべきだと感じています。業務ではすでにビジュアル化の手法を用いていますが、今後は標準偏差も活用していきたいと考えています。 採用分析の狙いは? 採用状況の分析については、平均値だけではなく標準偏差を用いることで、応募者数や面接評価の個々のばらつきをしっかりと捉え、より詳細な傾向を分析する計画です。これにより、採用プロセスの安定性や特定の職種や部門における採用難易度の変動を明確に把握することが可能になります。その結果、より効果的な採用戦略の策定やリソース配分の最適化へとつなげることを目指しています。 計算環境はどう? 現在は、最新の採用データを整理し、Excelなどのツールを用いて標準偏差を計算できるような環境を整えています。主要な指標である応募者数や面接評価の標準偏差を算出し、比較分析を実施する予定です。こうした分析結果を視覚化して定期報告に組み込むことで、より深い洞察を得られる体制を構築していきます。

データ・アナリティクス入門

数字が語る業務改善のヒミツ

データの集約ってどうやる? データの比較法について、数字を集約して捉える方法、目で見て捉える方法、そして数式を用いて集約し関係性を把握する方法を学びました。普段何気なく実施していることの意味を理解することで、さらに大きな効果を得られる必要性を感じています。 代表値と散らばりの活用法は? また、データ加工のポイントとして、代表値と散らばりの両方を活用する事例を学びました。双方の特性を活かした可視化を上手く利用できれば、より具体的な分析が可能になると実感しています。 工数計算の見直しは? 業務改善の際に、工数の計算方法が一面的であったことにも気付きました。関わる人数や各作業の分析データが欠けていたため、今後はこれらの情報収集にも注力し、ビジュアル化した際の分析範囲を広げる可能性を感じています。 収集データの過不足は? さらに、すでに収集しているデータの過不足の確認も行いました。各個人が提出する情報を一元的に抽出するツールの開発は進んでいますが、項目に不足がないか確認し、もし不足があれば機能追加を実施します。一律に集まったデータに対しては、簡単なグラフ作成を通じて作業記録などの分析を行っていく予定です。

クリティカルシンキング入門

数字と色が生む伝わる資料作り

グラフの使い方は正しかった? グラフの使い方について、誤りがなかったことを再確認できました。学習した内容が聞き手にとっても重要であるという認識を新たにし、今後は必要な数値や年月を漏れなく資料に掲載するよう努めたいと思います。一方で、各色の効果は理解しているものの、見えにくい色や目立たない色の場合、使用可能な色が限られてくるという認識も持っています。 提案資料の作成のヒントは? 提案資料を作成する際は、特に以下の3点を意識して取り組みたいと考えています。まず、リード文をはじめシンプルな表現でまとめること。次に、人間の目の動きを理解した上で、資料全体の構成に十分な注意を払うこと。そして、相手が疑問を持って内容理解に支障を来さないよう、適切な数値や時間軸に関する情報を追記することです。 資料完成後の見直し方は? これらの点は常日頃から意識する必要があると理解しています。資料作成の際には、机上メモに記録するなどして、確実に思い出せるよう習慣づけたいと考えています。また、資料完成後は、読み手の立場や意図を十分にイメージしながら一度通読し、自分自身の理解が不足している部分を洗い出す作業を欠かさず行いたいと思います。

データ・アナリティクス入門

平均値の活用で変わるビジネス戦略

平均値への新たな気づきは? 私はこれまで、単純平均値、中央値、標準偏差については書籍を通じて知識を得ていましたが、加重平均や幾何平均の重要性について十分に理解していませんでした。特にビジネスにおけるこれらの"平均"の概念の重要性に気づかされました。単純平均値では、表層に現れる数字とユーザーの実感が一致しない場合があり、「平均値(単純平均値)はあまり使えない」という固定観念を持っていました。しかし、その観念は、自分自身が適切な活用方法を知らず、また選択できていないことに起因していると気づかされました。 加重平均がもたらす変化 これまでは単純平均値を用いて、少額製品の評価が難しいと感じ、売上の大きい少数の製品に解析の重点を置いていました。しかし、今後は加重平均値を用いた分析を行うことで、少額製品の販売単価にも注目し、損益分岐点を明確にすることができるのではないかと感じています。 来期計画に反映する方法は? 現在、来期に向けた活動計画の策定を進めており、今回学んだ代表値の考え方を売上分析に反映させる予定です。これにより、前期とは異なるアプローチでデータを作成し、その結果を上位メンバー会議で審議する予定です。

クリティカルシンキング入門

データ整理で見えた多面的な視点の新発見

データはどう活かす? データをグラフ化することで、共有者全員が視点の漏れを確認でき、短時間で状況を把握できることに気付きました。角度を変えて情報を整理することで、複数の視点を生み出すことができました。また、留意点として、分解する際には、思いつくことから手を付けるのではなく、「When」や「How」といった枠組みで考えることで、漏れのない結論にたどり着けることを実感しました。 部門承認はどう取得? 研修計画を部門承認に使用する際には、実施方法や日程、参加者の切り分けなど、多くの検討事項があります。部門の承認を得るために、目的に沿った切り分けの考え方を使う必要があります。そして、部門説明の際には、即座に理解できるわかりやすさや、視覚的に理解が進む資料を重視したいと考えています。学んだグラフ化を使用する機会は少ないかもしれませんが、情報が伝わりやすい図の検討が重要です。 資料作成の工夫は? 具体的には、切り口や切り分けの考え方を一枚にまとめ、自分なりの順序を整理します。そして、研修計画の検討事項ごとに切り分けを行い、提案資料を作成する際には、数字や表ではなく、図で示すことができるよう工夫してみます。

データ・アナリティクス入門

データ分析が変わる、伝える力の育て方

具体例が必要な場合は? 普段分析している視点が言語化されているため、他者にアウトプットする際に考え方を体系的に伝えることができました。しかし、数字に集約するだけでは伝わりづらいと感じ、数学的な話をする際には具体的な事例を出して伝える必要があると気付きました。 データの見せ方を工夫する また、社内で分析したデータの見せ方に関しても工夫が必要だと感じました。ただデータを見せるだけではなく、データから読み取ってほしいことや感じ取ってほしいことを意識して、最も伝わりやすい見せ方を検討する必要性を感じました。 レポート改善の重要性 さらに、社内で発行しているすべてのレポートについて、その目的や従業員に何を伝えたいかを再度見つめ直して言語化することが重要です。この作業を8月末までに行い、言語化した内容に基づいて、より伝わりやすい表現方法や見せ方の改善策を9月末までに検討し、試験的にレポートを作成して従業員からのフィードバックを得る予定です。 フィードバックを活用するには? 最後に、そのフィードバックに基づいてレポートの改善策をまとめ、内容に従って改善を行うことを10月末までに進める計画です。

アカウンティング入門

アカウンティングで磨く意思決定力

アカウンティングへの深まりを実感 ライブ授業や基礎学習を通じて、アカウンティングの必要性に対する理解が少し深まりました。会社が利益を得ることは事業の成功を意味し、そのためには顧客の満足が重要です。この顧客満足を軸にして、財務三表や提供価値、資金などを考慮することが求められます。アカウンティングは、こうした意思決定に必要な知識のひとつです。今後の授業を通じて、どのようにこれが自分に適用できるのかをしっかりと理解したいと思っています。 利益計画における資金の役割 利益計画を立てる際には、活動にどれだけの資金が必要で、どれほどの利益が見込めるのかを判断材料として活用したいです。これにより、素早く意思決定を行い、効果的な活動に結びつけることで、部下に適切な指示が出せるようになりたいと考えています。 数字で見る財務諸表の理解 まずは、P/L(損益計算書)やB/S(貸借対照表)の構成を理解するために、書籍や会社の財務諸表を参照しようと思っています。具体的な数字を見ることで理解を深め、その上で自分の現在の活動にどのように応用できるかの具体的なイメージを持ちたいと感じています。

データ・アナリティクス入門

数字に秘めた改善の真実

平均と中央値はどう違う? 平均は全体の傾向を示す便利な指標ですが、外れ値の影響を受けやすいため、必ずしもデータの中心を正確に表しているわけではないと再認識しました。一方、中央値はデータを並べたときの中央の値であり、外れ値の影響が少ないため、偏りのあるデータに対して有効だと感じています。また、標準偏差を活用することで、同じ平均値でもデータのばらつきに違いがあることを明確に把握できる点が印象に残りました。 営業改善、ポイントは? 営業店の業務改善においても、代表値を活用する意義を学びました。具体的には、各店舗の業務処理時間を平均と中央値で比較し、処理時間が極端に長い業務がないかを確認することで、改善策の提案につなげる方法が効果的です。さらに、各営業店ごとの業務プロセスのばらつきを標準偏差で表現し、オペレーションの違いを把握する取り組みが有用であると考えています。 業務負荷の見極めは? また、ヒストグラムなどを用いて業務負荷の高い部分を特定し、改善の優先順位を決める手法にも触れ、業務効率化の進捗をグラフでフィードバックすることで、改善効果を視覚的に伝える方法の重要性も実感しました。

「数字 × 表」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right