戦略思考入門

ターゲット力で差をつける戦略術

ターゲットは誰? ターゲット顧客の明確化は、差別化戦略を構築する上で非常に重要だと感じました。どの顧客層に注力するのかをはっきりさせることで、何を行い何を行わないかといった戦略の基盤が固まります。また、外部環境を把握するためのPEST分析や、内部資源を評価するためのVRIO分析といった手法を組み合わせることで、自社の強みを活かした戦略立案ができると実感しました。 模倣と組織はどう見る? さらに、VRIO分析においては特に模倣困難性と組織的観点に注目することが重要です。他社にはない自社独自のリソース、たとえば蓄積された暗黙知や歴史、文化などを言語化し整理することで、企業としてのユニークな価値が際立つと考えます。また、ポジショニング理論とRBVの視点を併せ持つことで、コストリーダーシップなど自社の立ち位置を多角的に見直し、戦略を更に強化することが可能になると思います。

クリティカルシンキング入門

図解が生む気づきと共感

図解の活用はどう? 課題の全体像が漏れなく把握できるよう、図解を活用する点は非常に有用だと感じます。普段の口頭での対話に加え、ホワイトボードを用いることで共通の理解を深め、会議がスムーズに進む印象を受けました。 クライアントの視点は? また、クライアントとの課題整理にも図解は役立ちます。さまざまな課題が出た際に全ての視点が網羅されているか検討するのに適しており、定量的な情報を示す際にも理解が容易になると感じました。図解することで、クライアントが見落としている可能性のある視点にも、指摘するのではなく一緒に気づくアプローチが取れると考えています。 提案手法はどう? 実際、クライアントへの提案の場面では、この考え方を取り入れてみようと思います。事前に多角的な切り口で準備を行い、セッション中に図を用いて書き出しながら共に理解を深める方法を実践したいと考えています。

アカウンティング入門

P/Lで読み解く戦略の扉

コンセプトとP/Lは? P/Lの見方を理解する中で、企業のコンセプトとP/Lのバランスが非常に重要であると実感しました。P/Lから仮説を立て、どの部分で利益を生み出していくのかを考察することで、会社の方向性や戦略の正しさが見えてきます。 戦略の整合性は? その上で、まず自社の分析を改めて行い、コンセプトと利益構造の整合性や、今後の戦略・方向性が適切に合致しているかを確認することが大切だと感じます。具体的には、以下の点を重視しています。 ① 戦略立案時、特にキャンペーンや市場拡大を目的とする場合に、P/Lを基に戦略の妥当性を検証する。 ② コンセプトとP/Lの分析結果から、個々の施策が会社全体の戦略と一致しているかを判断する。 ③ 自社の定期的な分析と共に、競合他社の動向を把握し、コスト競争か付加価値の提供かを見極めた上で、適切な競合対策を検討する。

データ・アナリティクス入門

細分化で見つけた改善のカギ

A/Bテストで何を発見? A/Bテストを活用することで、比較的簡便に効果的な解決策を見いだし、継続的な改善へとつなげられることを学びました。これからは、日々の施策検討において、課題を細かい要素に分解し、それぞれについて最適な解決策を追求していくプロセスを取り入れていきたいと考えています。 テスト計画は何が肝心? プロモーションのA/Bテスト計画を立てる際は、まず目的と仮説をはっきりとさせることが大切です。テストは1要素ずつ行い、同一期間内に実施することで、外部環境の影響を受けにくくなります。また、問題の原因を探る際には、プロセスをできる限り詳細に分解し、ボトルネックとなる部分を見極めることが求められます。 解決策評価はどうする? さらに、解決策を検討する場合は、何を基準に評価するかという判断基準を明確にした上で、各案を慎重に評価することが重要です。

戦略思考入門

業界データと周辺情報で見つける成功戦略術

規制産業のデータ推測方法は? 業界データから個別企業の売上や利益を推測することを学びました。タクシー会社のような規制産業では特に、実務で手に入らない情報を周辺データから類推する習慣をつけていきたいと考えています。 手術機器市場の分析方法は? 私は、手術機器の医療機器メーカーのマーケティングを担当していますが、クリニックで手術が行われているかどうかの統計データがなく、これまであまり分析をしていませんでした。今回の演習を通じて、他のデータから類推できる方法を検討してみたいと思います。 2025年戦略の成功要因は? 2025年のマーケティング戦略立案時には、自社のビジネスの特性や業界の特性を理解し、フレームワークを活用して戦略を立てたいと考えています。その際、表面的な分析に留まらず、本質を捉えた分析を行い、社内のメンバーを巻き込みながら方向性をまとめたいです。

クリティカルシンキング入門

問いから広がる学びの扉

問いの本質は何? 今週のライブ授業では、クリティカルシンキングにおいて「問い」がいかに重要であるかを学び、最後のまとめを行いました。特に、あるスポーツリーグの例では、いきなり数値の扱いに取り組むのではなく、まずは問いを明確にしてからデータ分析を進めることの大切さを実感しました。これまでは数値から意味を見出そうと必死になっていたのですが、まず問いを整理してから分析することで、より深い洞察と説明のしやすさが得られると感じました。 仕事の問いはどう? また、仕事においても、何かを考え始める際は最初にイシューを明確にすることが重要だと学びました。具体的には、まず自分が解決すべき問いを立て、その問いに基づいて今何をすべきか検討します。さらに、この問いを周囲と共有し、自分の考えに対してフィードバックを得ることで、より良いアイデアにブラッシュアップできると感じています。

データ・アナリティクス入門

どのデータを集めるかが未来を決める

比較の重要性を再考する 分析の本質は比較であることを学びました。これまで、比較対象の選定や要素の統一が不十分だったため、正確な分析ができていなかったと感じます。特に、生存者バイアスがかかってしまうことが多かったことを反省しています。 実証実験で得る結果は? 新規事業を創出する部門に所属しているため、秋から行う実証実験ではデータの適切な分析と比較対象の正確な選定を心掛け、意味のある結果を得たいと考えています。また、取得したいデータの設計も行い、目的に合った実証実験を行いたいと思います。 適切なデータ設計とは? 実証実験の目的を再確認し、成功と見なされるために必要な情報を考えます。どのようなデータを取得すればよいかを設計し、それを企画に反映させます。分析の本質は比較にあることを常に念頭に置き、適切な比較対象を設定することを意識して進めていきたいです。

データ・アナリティクス入門

学びが起こす知見の化学反応

問題点はどう把握? プロセスや構造に分けて問題点を特定することが、その後の質に大きく影響すると実感しています。まず、問題点を明確に洗い出し、その原因に対して仮説を立てるプロセスが重要です。仮説を検証するために、データをもとに検証を行い、比較という視点を取り入れることで、効率的かつ網羅的な検証が可能になると考えます。 仮説の基礎は何? 良い仮説を立てるためには、具体的なイメージを描くことが不可欠です。そのためには、まず自分の実際の経験に基づいた知見を持つこと、また他者からの豊富な経験を聞くことが有効です。さらに、異なる部門や業界の意見に触れることで、知見に化学反応が起こり、新たな視点を取り入れることができます。 知見を守る秘訣は? 結果として、経験の幅と質を高めることで、絶えず学び続けながら自分の知見の鮮度を保つことができると考えています。

データ・アナリティクス入門

数値で見抜く!漏れゼロの採用戦略

どの段階で離脱? ファネル分析を通して、どの段階で対象が離脱しているかを可視化できるため、問題点を明確に捉えることができると感じました。ただ単に結果を眺めるのではなく、途中段階で状況を確認し、各プロセスを適切に設定することが重要だと思います。 採用選定のポイントは? また、採用活動においては、採用エージェントや採用プラットフォームの選定に活用できる点が印象的でした。まず、人材会社のユーザー数、直近3カ月以内のアクティブ数、採用職種の登録人数、採用希望年代など、段階的に絞り込むことで、対象となる母数の大きさを把握する手法が有効だと感じました。 母数比較で選定は? さらに、それぞれの採用エージェントやプラットフォームを運営する企業ごとに同様の絞り込みを行い、母数を比較することで、採用活動に最も適した人材会社を選択できると実感しました。

データ・アナリティクス入門

仮説で読み解く学びの軌跡

仮説はどう進める? 業務においては、まず仮説思考を用いて検証を行います。複数の仮説を立て、できるだけ網羅性を持たせることが求められます。その上で、必要なデータを抽出し、仮説を検証します。仮説を裏付けるデータだけでなく、反証するデータも同時に集めることで、その説得力が増します。また、仮説をさらに深堀りして広げる必要があります。 データ不足の理由は? しかし、実際の業務では、仮説を立てても検証可能なデータが十分に得られず、結局その正否が判断できないケースが多々発生します。できるだけ具体的なデータを抽出して検証を行いたいものの、網羅的に仮説を立てるのは比較的容易であっても、その中から正しいものを選び出す判断は難しいです。特に、仮説を裏付けるデータが不明瞭な場合、裏付けするデータも反証するデータも得られず、結局何も行動できない事態が多く生じています。

データ・アナリティクス入門

ありたい姿でイベントを革新

どのアプローチを採用? サンクコスト、定量分析、MECE、ロジックツリーについて学び、問題解決プロセスではまず「あるべき姿」と現状とのギャップを明らかにすることが大切だと理解しました。また、正しい状態に戻すための問題解決と、ありたい姿に到達するための問題解決という2つのアプローチがあることも知りました。 自分の方向性はどうする? この学びを踏まえ、今自分がどちらの問題解決に取り組むべきかを見極める必要があると感じました。特に、イベント企画においてはロジックツリーが役立ちそうだと思いました。 どう進めるのか? 具体的には、毎月のイベント企画の際にはまず「ありたい姿」を描くことから始め、ロジックツリーを活用してイベント内容を検討したいと考えています。また、アンケート項目の作成に際しては、MECEを活用してバランスの良い検討を行いたいです。

デザイン思考入門

疑問から生まれるデザインの力

多様な視点が見えた? 同じテーマについて多様な視点が存在することを学びました。ユーザー目線で現状の仕組みが本当に適切かどうか検証する過程で、各メンバーが異なる観点から意見を述べるのが非常に印象的でした。また、デザイン思考に関しても、参加者それぞれの想いが交わり、ディスカッションが盛り上がった点がとても興味深かったです。 現状をどう問い直す? 現状に疑問を持つことの重要性を実感しました。従来の方法や制度がただ続いている理由だけで運用されている場合、それをユーザー目線で見直し、より使いやすい形に改善する必要があります。まずは現行制度の確認と再検討を行い、実際に受けた問い合わせや相談内容を反映させながら問題定義を進めることが大切です。さらに、可能な範囲で改善策を検討し、ロジックツリーなどの手法を用いて試行錯誤を重ねるプロセスが印象に残りました。
AIコーチング導線バナー

「行い」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right