戦略思考入門

上司の戦略から学ぶ賢い道の選び方

上司の戦略はどう見る? WEEK1を通じて、身近にいる優秀な上司が持つ行動と戦略思考の共通点に気づくことができました。彼らは明確にゴールを設定し、二手先や三手先のリスクや相手の反応を見据えた上で初手を決めています。また、このプロセスは直線的なものだけではなく、楽な道を選び、不要な衝突を避ける最短距離を見抜く力が大切だと学びました。そして、そのために必要なことを徹底する一方で、しなくてもいいことを切り捨てる判断も重要だと実感しました。 どう部下を導く? 自身の行動にとどまらず、部下からの相談に対応することも多い中で、社内外の多様な利害関係者がいることを考慮しつつ、職場のメンバーをストレスなく適切な判断でゴールに導けるビジネスパーソンを目指したいと考えています。 未来をどう予測? 日常業務では、次の手を打った際の効果や影響について考える力はある程度備わっていると感じますが、二手先や三手先までを予測する能力はまだ不足を感じます。また、ゴールまでの進め方に関しても直線的になりがちです。そのため、戦略的な迂回策を意図的に考える力と習慣を身につけたいと思います。

データ・アナリティクス入門

データ分析で業務改革を目指す学び

データ分析で重要なのは? 現在、実務の初歩的なデータ分析に触れる機会はあるものの、改めて分析手法を体系的に理解することができました。特に、データ分析においては課題設定と仮説が極めて重要です。ただ単に分析手法の知識を持つだけでなく、領域知識も必要となるため、日常業務では特に業務理解を深めることを意識していきたいと思います。 業務改革で何が求められる? 業務改革の根拠としてデータ分析を利用することが多いですが、第1週の学習を通じて、私が現在取り組んでいるのは、分析というよりもむしろ集計や可視化に近いことを理解しました。したがって、まず課題の設定や仮説に基づいてどのようなデータで比較するかを慎重に検討し、情報を収集することから始めるべきだと考えています。 領域知識を高めるには? また、課題設定や仮説を立てるための領域知識が不足しています。そこで、領域知識の向上を目指しながらも、分析を進めるためには周囲の協力を仰ぐことも重要だと感じています。データが複数のシステムにまたがって保存されているため、一度どのようなデータが存在するのかを整理することが重要です。

データ・アナリティクス入門

データ整理で未来を変える学び

正しい手順はどう? 問題解決の4つのステップは基本的に「What→Where→Why→How」の順で進みます。このプロセスを通じて、あるべき姿と現状のギャップを数値で示すことが重要です。日常の課題解決にはロジックツリーを活用することが一つの手段として有効です。その際のコツとして、過度にMECEを意識するのではなく、感度の良い切り口を見つけることが肝心です。 保険業界の課題は? 具体的な課題として、保険業界でのデジタル化に関連する多くのデータが整理されていない点が挙げられます。この場合、どのようなデータが収集されており、またどのデータが不足しているのかを把握するために、ロジックツリーを用いて整理することが有用です。 施策立案はうまく? データを活用してデジタル化推進の施策やプロモーション案を策定するためにも、まず現状のデータを整理することから始めたいと思います。ロジックツリーを用いることで、デジタル利用率を手続き別や代理店の種別といった切り口で整理し、分析を進めます。これにより、より具体的で効果的な施策につなげることが期待できるでしょう。

マーケティング入門

顧客の真のニーズに目を向けて

顧客の真のニーズとは? 「顧客の真のニーズは本人さえも気づいていないことがある」という言葉が特に印象に残りました。自分自身を振り返ってみても、日常生活で感じる不便さや困りごとは多くありますが、それを即座に言葉にするのは意外と難しいと感じます。この講義を通じて、顧客ニーズの深掘りの重要性が理解できました。 日常に潜む商品価値は? 私は食品の容器を調達する部門に属しているため、顧客の困りごとに敏感に反応してニーズを捉えることができれば、さらに顧客に寄り添った資材の社内提案や調達が可能になると感じています。そのためには、日常的に身の回りの商品に対して「どう感じたのか」に敏感である必要があると考えました。 自社と他社製品の理解を深める方法 まずは自社製品を徹底的に理解し、私自身やお客様が「不便」や「イマイチ」と感じた点を深く掘り下げて、それに対してどう対応すれば良くなるのかを考えることから始めたいと思います。また、他社製品についても同様に考え、ヒットしている商品に対して「どうしてこの商品は売れたのだろう」と考えるようにすることが重要だと感じました。

クリティカルシンキング入門

目的を捉える―聞く力の新発見

目的理解の必要は? これまで、課題に対してただ提案することだけを重視していましたが、検討に入る前に目的をしっかりと理解することの重要性に気づきました。目的を把握し、整理しておくことで、検討の過程で情報の漏れや重複、また答えが目的から逸れてしまうことを防げると感じています。 聞く力に意味は? また、「聞く力」の大切さも改めて認識しました。質問の意図を的確に理解し、他者の意見や提案に耳を傾ける姿勢を持つことが、より良い成果につながると実感しています。 案内への活用は? この学びを、社員全員に向けた案内文の作成に活かしたいと考えています。個々の事情や背景が異なる中で、目的と伝えたい内容を明確にし、様々な角度から検討を行うことが納得感のある案内につながると思います。また、上司や同僚と相談する際も、最初に目的をしっかり伝えてから意見を求め、決定後もフラットな視点で見直すことが重要だと考えています。 実生活でどう改善? 今後、日常生活の中でこの学びをどのように意識し、実際に活かしていくかを試行しながら、さらなる改善につなげていきたいと思います。

データ・アナリティクス入門

平均再発見!生データが語る学び

平均って何だろう? 基本的な代表値である平均とばらつきを再確認しました。また、関連するフレームワークの動画を通じて、単純平均、加重平均、そして幾何平均といった具体的な計算方法が存在することを学び、以前は知っていた幾何平均についても、計算方法や名称を含めて改めて理解することができました。 中央値はなぜ大切? 技術職として、日常的に平均値や標準偏差を用いたばらつきの分析を行っています。中央値については、その定義や目的を理解しているものの、実際の業務では頻繁に使用することはありません。しかし、中央値が持つ目的を意識し、グラフや図を用いて全体の分布や外れ値の有無を確認することで、解析の正確性を担保していると感じています。 外れ値の確認方法は? また、普段からデータに触れる中で、改めて図での表示を行い、データの前処理における外れ値の存在を意識することの重要性を再認識しました。どの業務においても、正しい目的意識を持つことが根幹であると実感しており、今回学んだ単純平均、加重平均、幾何平均を活用して、目的に即した正確な解析を進めていきたいと考えています。

クリティカルシンキング入門

多角的視点が解くデータの謎

多角的視点はどう? データを見る際には、様々な切り口を持つことの重要性を改めて実感しました。切り口のレパートリーが少ないと、誤った解釈に導かれる恐れがあるため、一つのデータに対して複数の視点から分解することが、正確な解釈へとつながると感じています. 応募増加の理由は? 具体的には、月間の採用進捗を確認する場面で、前月から応募が増加した場合、属性・性別・年齢などの観点でデータを分けて検証すれば、その増加の要因がより明確になると思います。こうした実践的なアプローチが、日常業務における分析力向上に役立つと考えています. 切り口は変える? また、普段からデータを見る機会が多いこともあり、いつもより2パターンほど違った切り口で検討することを意識していきたいと思います。これにより、単に数字を見るだけでなく、背景にある要因や意味まで理解する助けとなり、分析の幅を広げることができると思います. 深い洞察は得られる? このような進め方を継続することで、データの分解に対するレパートリーをさらに充実させ、より深い洞察を得られるよう努めていきたいです.

データ・アナリティクス入門

小さな疑問から大きな発見へ

何故課題意識は必要? 分析の目的や課題意識を明確にすることで、日常の業務だけでなく、普段目にする分析データについても「なぜ?」と考える習慣が身につきました。例えば、ニュース記事で医師不足が取り上げられる場合、その背後にある分析の意図や解決すべき課題を自分なりに考察するきっかけとなりました。 施策評価はどう? また、業務で複数の施策を企画・実行する中で、効果を評価するための分析が重要だと感じています。中長期的な戦略の実行に際し、連続性のある施策を実施するためにも、小さな施策のブラッシュアップを繰り返す必要があると考えています。たとえば、アプリへのログインプロセスを細かく分解し、特に初回ログイン率の向上に向けた分析を進めています。 情報取得は万全? さらに、戦略立案の段階から必要な情報やデータが適切に取得できているかを精査し、取得できていないデータにはタグ付けなどの対応を実施して、常に分析が可能な状態を作り上げています。同じ条件で定期的にログの確認やレポート作成を行う仕組みを整備することで、継続的な定点観測が可能になりました。

データ・アナリティクス入門

分析目的を明確に!データ活用の極意

分析の目的設定はなぜ重要? 「分析とは比較なり」が今回の講義の究極のゴールであるが、それだけでは不十分である。分析の目的をしっかり設定し、自分なりに仮説を立て、それに必要なデータを用意することが重要だ。また、適したグラフを選ぶことも必要である。 結果を伝えるための見せ方とは? 分析の目的を念頭に置きつつ、最終的にはデータ分析を基に説明や説得を行うため、見せ方にも気を配る必要があると感じた。 データ分析の活用方法は? 現在、保証契約のデータを分析している。目的は、経営陣に過去の実績を報告することと、顧客に実績を示すパンフレットを作成することである。それぞれの目的を追求すると、保証契約制度を推進する施策の検討や実績アピールによる利用促進が考えられる。これらの目的を念頭に、どのデータを分析すべきか、どう表現すべきかを考えることが大切だ。 記憶に残る工夫はどうする? 目的に立ち返ることを忘れないようにしたい。具体的には、PCの壁紙や手帳など、日常的に目にするものに「分析とは比較なり」と記入しておき、記憶のフックを作りたいと思う。

クリティカルシンキング入門

説得力UP!論点・結論・根拠文章トレーニング

論点と根拠の関係は? 論点から結論、そしてその根拠を整理して伝える方法について学びました。相手に「Yes」と言ってもらえるためには、まず悩みや不安といった切り口を提示し、それに対する解消策を根拠として示すことが重要だと感じます。 伝達のギャップはなぜ? GAiLを利用する中で、会議や打合せで口頭で伝えたつもりの内容が、実際には伝わっていなかったことを再認識しました。そのため、日常的な実践が必要だと感じ、まずは文章でのトレーニングに取り組むべきだと思います。 簡潔文章の作成法は? メールや報告書、説明資料など、短く分かりやすい文章を作成する際には、論点、結論、根拠という構成が非常に有効です。相手の立場に立った根拠を示すことで、説得力を持ったコミュニケーションが可能になると感じました。 会話にも活かすコツは? 日常の会話やメールでも、何が論点で、どのような結論を導き、その根拠が何かを意識することが大切です。また、他者の文章や資料を読む際にも、同じ視点で内容を確認することで、自分自身の文章力も向上していくと実感しています。

データ・アナリティクス入門

全体像に迫る!データ活用の新視点

全体像を掴めた? 今週は、これまで学んできた内容の総括を行い、全体像を整理することができました。特に、さまざまなフレームワークを学ぶ中で、データ分析への応用という視点が十分に考慮されていなかったと感じ、その応用方法を学べたことは大きな成果となりました。 解決プロセスは? 問題解決のステップや、各ステップにおけるプロセスの分解など、これらのフレームワークがMECEの実践には欠かせない要素であることを実感しました。今後は、これらの点を念頭に置いて取り組んでいきたいと考えています。また、仮説設定については、あくまで切り口として捉え、仮説の実証に固執しない姿勢を大切にしていく所存です。 データ活用はどう? さらに、日常的に触れるデータを活用し、各フレームワークを自分の中に定着させるためには、意識的な実践の場が必要であると感じました。そのため、普段の業務はもとより、オープンデータを活用して実践できる環境づくりに取り組むつもりです。具体的には、新たな講座への受講や社内での勉強会の企画などを通じて、さらなるスキルの向上を目指します。

データ・アナリティクス入門

データ分析で業務効率化の新発見!

データ分析で新視点を得るには? データ分析とは、比較を行うことで新たな視点やアイデアを引き出すことが可能であると学びました。同じ基準や条件を用いることで効果的に分析ができ、新しい発見に繋がることが特に印象的です。 効率化への第一歩は? これまでの仕事では、何となくデータを用いながらプロジェクトの進捗を管理していましたが、新しい職場では積極的にデータの可視化を取り入れ、業務の効率化を図りたいと考えています。以前は過去のデータより直近のプロジェクトの状況にのみ焦点を当てていました。 なぜデータ可視化が重要? 日常業務の中で、業務上必要がない場面でもデータを可視化することは重要だと考えていましたが、既存のシステムやBIツールに頼りがちでした。しかし、自ら業務プロセスをデータ化することが、業務のパフォーマンス向上に繋がるのではないかと考えています。 ダッシュボード作成スキルをどう磨く? 現在は過去のプロジェクトマネジメントの経験を活かし、会社の既存のダッシュボードを一から作成するスキルを身につけるために勉強を続けています。

「日常」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right