戦略思考入門

目的意識を持つことで得た成長と戦略

目的意識の重要性を再認識 目的意識を持って何事にもあたることの重要性を再認識しました。フレームワークや学んだ理論はあくまで手段であり、目的意識を持って本質を捉える視点が重要です。ただやみくもにフレームワークを活用するのではなく、答えのない今のような時代だからこそ、仮説思考・仮説検証の位置づけで、今後も戦略的な思考を活用したいと考えています。 サプライヤー戦略に活用できる? 自らの業務においては、例えばサプライヤー戦略にフレームワークを活用することが考えられます。今後、どのようなサプライヤーと開発していくかという課題に対しては、SWOT分析を用いて強みを活かし、弱みを相互補完し合えるサプライヤーと共同開発するべきです。このような視点で、サプライヤーの強み弱みも仮説を持って進めることが重要です。 キャリアビジョンはどう更新? さらに、自らのキャリアビジョンの更新にもフレームワークを活用できると学びました。社会から需要のある状態を維持するためには、自分の強み・弱みを再検討し、今後どのようなスキルを身につけるべきかを考えていきたいと思います。 具体的な取り組みは? 具体的には、以下のような取り組みを行いたいです。 ・技術戦略やサプライヤー戦略など、自らの業務の中でフレームワークを活用する。 ・テーマの開発において、1〜2年ごとに振り返りを行い、辿った道が正しかったのか、どのような障害があったのかを考える。 ・思考を書き出し、言語化・可視化してアウトプットする。 ・これらをチームや上司に提案し、フィードバックをもらってブラッシュアップする。 ・学んだことを意識して定期的に振り返る。

データ・アナリティクス入門

データ分析で広がる学びの可能性

問題解決のプロセスは? 解決策を導くためには、まず原因を洗い出し、プロセスに分解して問題に至るまでの過程を確認することが重要です。その過程で、どの部分で問題が発生しているのかを把握します。また、複数の選択肢を設け、その選択肢を根拠を持って絞り込むことが求められます。この際、決め打ちしないように心がけます。 判断基準とデータ収集のポイントは? 次に、判断基準を設け、重要度に基づいて順位づけを行います。分析と合わせ、仮説を立てながらデータを収集し、ABテストなどで仮説検証を並行して実施します。使われなければ知識は忘れてしまいますので、日常的に課題を捉え、原因を探索し、仮説を立てて解決策を考えることを意識することが大切です。 また、日々シミュレーションを意識的に行い、データをどうやって収集するかを考える癖をつけることも重要です。複雑なステップが関係する業務の改善策立案においては、プロセスを分解し、問題に至るまでの過程を丁寧に見直すことから始めるべきです。 複数解決策の評価方法は? 私自身、答えが一つに絞りがちな癖がありますが、複数の解決策を立て、それを判断基準に基づいて評価するステップを実行しようと思います。実行を急ぐあまり、ベターな一つの解決策で進めがちですが、その癖を直すことを目標に業務に当たります。 日常のシミュレーションをどう工夫する? 日々意識的に課題を発見し、シミュレーションを行うことを心がけ、有効なデータとデータ収集方法を考える癖をつけていきます。課題をプロセスに分解することで、本質的な課題へのアプローチに努め、仮説を実際にABテストなどで試すことを実施していきます。

データ・アナリティクス入門

仮説とデータで見える改善の鍵

比較分析のポイントは? 今回の講義では、業務改善や標準化に取り組む上で、比較分析の重要性を再認識しました。まず、比較の軸として「インパクト」「ギャップ」「トレンド」「ばらつき」「パターン」という5つの視点を意識することが基本であると学びました。また、問題・目的・問いを整理し、仮説を立てた上でデータを収集・加工し、検証していくプロセスの大切さにも気づかされました。仮説を立てる際には、MECEを意識して常識にとらわれず新しい情報も取り入れつつ、まずはざっくりとした仮説を作成する。その後、必要な検証の程度を見極めながら、情報収集と分析を行い、仮説を肉付けまたは再構築していくという流れが印象に残りました。これらの仮説思考のクセを身につけることが、今後の業務改善に大いに役立つと感じています。 業務の課題は何? また、実際に自分の業務改善に取り組む中で、長年携わってきた業務では「問題」として捉えられていない部分があるのではないかと考えています。そのため、まずは業務にかかる時間や売上といった指標を用い、仮説を立てて検証するアプローチを試みることにしました。具体的には、商談、見積、受注率、輸送費などの中から一つの業務を選び、その業務に要する時間を分析することで、担当者や取引先による差異が見られるかどうかを検証していきます。 数字の読み方は? さらに、仮説思考や全体的な思考力を養うため、以前紹介していただいた『定量分析の教科書』を購入し、数字の読み方や使い方について継続して学んでいく予定です。これからも今回学んだ手法を業務改善に活かし、実践を通して思考の習慣化を図っていきたいと考えています。

データ・アナリティクス入門

スピード重視の仮説検証で未来へ

数値と定性の評価はどれ? デザイン変更の方法案を、コスト、スピード、意思疎通などの各観点から数値で比較する手法は、とても効果的だと感じました。しかし、実際には数値化が難しい場面も多いため、例えば「大中小」や「◎〇△×」といった定性的な評価方法も有効だと思います。実際、イベントのプランニング月間である6月には、MECEに基づいて項目を洗い出し、これらの評価方法を用いて各案を総合的に比較したいと考えています。 A/Bテストの理解は進んでる? A/Bテストについては、これまで学んできた知識を活かし、解説通りの考え方で演習に取り組むことができました。その後の動画で、ポイントを絞って比較するという視点が紹介され、非常に納得のいく気づきを得ました。以前から社内ではA/Bテストの必要性は認識していたものの、コストを抑えながら迅速に実施する方法が見出せずにいました。今後、部内でのリサーチや議論を重ね、具体的な手法が確立できた際には、今回の学びを活かしていきたいと思います。 行動と分析のバランスは? 最も印象に残ったのは、原因の特定に時間をかけすぎず、実際に行動を起こし、仮説検証のサイクルを早期に回すという考え方でした。これまで、分析にもっと力を入れるべきだと考えていた自分が、ビジネスのスピードとのバランスを重視する必要性に気付かされました。もちろん、分析と実証の双方に適切な時間とエネルギーを割くことが重要だと感じています。具体的には、先輩社員の意見を聞いたり、必要に応じて外部の知見も取り入れながら、約半分の比率で分析を進める方法を模索し、明日から日々意識して取り組んでいきたいと考えています。

データ・アナリティクス入門

ビジネスの答えを導く仮説と検証のサイクル学習

仮説検証の重要性とは? 改めて仮説を立てること、そしてそれを検証することの重要性を学びました。ビジネスには正解がない場合が多いですが、その状況に応じた最適な答えを出す必要があります。そのためには、良い仮説を立て、データを収集し、それを素早く検証するサイクルを回すことが極めて重要です。このサイクルを通じて問題や施策を導き出すことを再認識しました。 フレームワークはどう活用すべき? また、仮説を立てる際にはフレームワークを活用すること、その仮説を検証するためには適切な指標を選び、収集したデータが反論を排除するための情報にまで踏み込めているかどうかを確認することも新たな気づきでした。これまでの経験を振り返ってみると、「仮説~検証」については何となく同じようなことをしてきましたが、仮説が網羅的でなかったり、検証が不十分だったりしました。今後は意識してこれを実行していきたいと思います。 未然防止に役立つ学びとは? 安全衛生活動(事故未然防止活動)にもこの学びを活用します。例えば、ヒヤリハットが年に1回発生している工場と全く発生していない工場では、現状は表面的な差異を見つけて、適当な仮説を立てて施策に結びつけようとしていました。しかし、これからはもっと網羅的に問題を分析し、適切な打ち手に繋げていきたいと思います。 ヒヤリハットの原因を追究するには? まず、そのヒヤリハットが「不安全行動」や「不安全状態」のどちらから発生しているのか、「4M」のどれに起因しているのかなど、問題の発生要素を網羅的に仮説立てします。それが本当にそうであるのか、データやヒヤリングを通して検証していきます。

データ・アナリティクス入門

仮説とフレームワークで導く新発想

仮説の意義はどう捉える? 仮説の意義と4P・3Cのフレームワークの活用について考察しました。現状や現象を整理し、そこから課題を明示する方法としてフレームワークは有効な手段だと認識しています。しかし、設問では仮説の立て方が問われ、その内容が単に問題点や疑問点の抽出に留まっている点に疑問を感じました。仮説を「ある論点に対する仮の答え」もしくは「分からない事柄に対する仮の答え」と定義するならば、現状の把握とその先の打ち手を考察する過程で生じるのではないかと思います。このため、ビジネス上の意味合いに限定して用いるほうが適切であり、安易に「検証」という言葉を使わないほうが良いと考えました。こうした疑問を通じて、仮説とフレームワークの使い分けが整理できたと感じます。 4P・3Cの整理法はどうなる? また、事業計画や事業分析において、4Pや3Cというフレームワークで物事を整理する手法は非常に重要です。思いつきで捉えるのではなく、フレームワークに沿って取りこぼしのない視点で分析することで、発見された課題や問題点が具体的になり、改善策を立案するための基盤となります。さらに、第三者に内容を伝える際にも、論理的に整理された情報は理解しやすく伝わります。 正しい検証はどう進む? 実際の取り組みでは、4Pや3Cのフレームワークを活用した上で、問題点に対して「〇〇ならば▼▼である」という形式で仮説を立て、その上でデータ分析により課題の抽出ができるかを検討しています。これは、問題を具体的なエビデンスをもって示すためのプロセスであり、その後の打ち手の考察へと順序立てて進めることが重要だと感じました。

データ・アナリティクス入門

小さな仮説、大きな成長

なぜ仮説が必要? 仮説は非常に重要です。急いだり怠ったりして、仮説を立てずにいきなり方法論に入ると、結果として時間が余計にかかるか、誤った方向へ進んでしまう可能性があります。 どう検証すべき? また、仮説はあくまで仮の答えであり、その検証が必要です。検証のためには目的意識を持ったデータ分析が不可欠です。そのため、たとえ「答え」となりうるものであっても、複数の仮説を立てることが求められます。さらに、3Cや4Pなど異なる切り口を用いることで、問題全体を網羅的に捉えることが可能となります。 疑いは成長の鍵? 加えて、仮説の立証を目的としたデータ収集や分析においては、自身の仮説が誤っているのではないかという視点を忘れずに実践することが重要です。こうすることで、自分に都合の良いデータだけを集めてしまうことを避けられます。 原因はどう見極め? 実店舗の売上やPLに関する業務では、好調な店舗と不調な店舗が存在します。いずれの場合も、その原因を正確に特定し、好調なら通例に従い、不調なら改善策を講じることが必要です。これまで、まず膨大な時間をかけてデータを収集していたところを、仮説思考を取り入れることで、何が問題なのかを先に明確にし、仮説を立てることから対応するようになりました。 何を意識すべき? また、目につきやすい場所に仮説思考に関するポイントやステップを掲示し、常に意識できる環境を整えることも有効です。正解や不正解を問わず、失敗を恐れずに実践していくこと、日常的に課題意識や疑問を持つこと、そして先輩たちの実践事例や経験から学ぶことが、さらなる成長につながります。

データ・アナリティクス入門

データの先にある学びの秘密

講義内容はどう感じた? ライブ講義を拝聴しながら、ポイントを迅速に判断し整理する力がまだ十分でないと感じました。どのデータセットを扱う際にも、何を明らかにしたいのかという目的意識をしっかり持ち、ロジカルシンキングや仮説立案のスピードを高める必要があると痛感しました。大量のデータを扱う中で、解決策の発見に注力するあまり、次第に目的から逸れてしまうことが実務上でも生じるため、その兆候を早期に掴むことが重要であると改めて認識しました。 営業戦略はどんな課題? 営業データを活用した営業戦略の立案においては、成約率向上という課題に対して、これまでの商談データを基に再検証を行う必要があります。過去にはあまり意識されなかったデータの粒度の粗さや、文章化およびビジュアル化の不足が、組織全体の納得感に影響していたと感じます。具体的には、なぜ成約率が低いのか、セグメントごとや担当者ごと、そして営業ステップごとの課題を明確にし、それぞれの原因を検証した上で、効果的な解決策を導き出したいと考えています。 UX改善は何が必要? サービス利用データを活用したUX向上施策の立案では、SaaSサービスのアクセスログをもとに、どの機能が利用され、どの機能が利用されていないかを明確に分類することが求められます。使われていない機能については、導入時からの利用状況や徐々に利用が減少しているのかなど、その背景を整理しながら原因分析を行います。さらに、仮説を立てた上で改善策を検討し、場合によっては機能の廃止も含めた対応を実施するために、顧客へのインタビューなども通じて検証を進めていきたいと考えています。

データ・アナリティクス入門

仮説力で拓く新たな学びの旅

仮説とは何か? 仮説とは、論点に対する一時的な答えを意味します。仮説を立てる際には、決め打ちせず複数の可能性を検討することが重要です。フレームワークを活用して、どの指標を基準に、何と比較するか、またそのためにどのようなデータを集計し、どのように見せるかを考える必要があります。 データはどう取る? また、着目する指標や比較対象のデータを収集する際には、「誰に、どのように聴くのか」という点が大切です。都合の良いデータだけに頼ると、誤った仮説を前提にしてしまうリスクがあります。他の可能性を十分に考慮することで、不要な仮説を排除し、より正確な情報に基づいた議論につなげることができます。 議論はどう進む? 日常の業務においても、仮説をもとに論点を提示し、議論を重ねる場面が多いです。これまで経験や肌感覚から決め打ちしていた仮説も、複数の視点で検討することで、より網羅的かつ具体的な検証が可能になります。仮説を裏付けるデータの示し方や、どのように比較し、提示するかという方法も試行錯誤の対象です。 人事事例はどう見る? 人事領域の取り組みとしては、スタッフが出会い採用内定、入社からその後の活躍、さらには休職や退職に至るまでのジャーニーマップを構築した事例が挙げられます。まずこれまでの経験や収集できるデータをもとにストーリーとしてのジャーニーを描き出し、その後、ヒアリングや不足しているデータの補完によって仮説を検証・肉付けしていくという方法です。このとき、現状の仮説が網羅的かどうか、また他の切り口がないかを再確認し、データの取り方や示し方を見直すことが大切です。

クリティカルシンキング入門

問いに挑む毎日の成長

今の問いは何だろう? イシューとは、今ここで答えを出すべき問いのことです。イシュー設定の際には、「問いの形にする」「具体的に考える」「一貫して抑え続ける」という3つのポイントを意識する必要があります。まずは、問いが何であるかをはっきりさせることが大切です。 全体で課題を共有する? 次に、その問いを常に意識し続けることで、解決すべき課題が見失われないようにします。そして、組織全体でこの問いを共有することで、皆が同じ方向性に向かって課題解決に取り組むことが可能となります。適切なイシュー設定は課題解決の成功に直結するといえるでしょう。 手法で問題を割り出す? また、これまで学んできたロジックツリーやプロセス分解の手法を活用することで、イシューを導き出す方法もあります。例えば、売上構成をロジックツリーで細かく分析し、問題を特定の要素(例えば、客数の少なさ)に収束させるといったやり方が考えられます。 ユーザー心理は理解済? さらに、自社サービスのウェブサイトに訪れたユーザーがどのような課題を感じ、最終的にどのような体験をしているのかについて、ユーザビリティテストを行わずとも自らイシューを見極めることが可能です。ユーザー行動に注目し、どの画面で何がわかりにくいのか、どのような心理を引き起こしているのかを把握することが重要です。 仮説検証の流れは? 具体的な取り組みの手順としては、まずチームで最も解決すべき問題(イシュー)を特定し、そのイシューに基づいてデータを精査します。その後、仮説検証を繰り返すことで、実際の課題や障壁を明確にしていく流れが効果的です。

データ・アナリティクス入門

数字で見える学びの未来

どうして視覚化すべき? 数字に集約することと、目で見て理解することの大切さを再確認しました。纏めたデータをグラフ化するなど視覚化することで、ヒストグラムなどを活用しながらデータのばらつきを直感的に把握できる点が印象的でした。 比較で何が見える? また、データ分析は「比較」に基づく作業であり、仮説思考が重要だと感じました。分析のプロセスでは、仮説を立て、異なる視点とアプローチを用いることによって、より本質に迫ることができると理解しています。 代表値はどう使う? 代表値の使い分けと散らばり(標準偏差)を組み合わせる方法も興味深かったです。平均値や中央値、加重平均、幾何平均など、用途に応じた手法があるため、Excelで計算できることから複雑な計算式を覚える必要はなく、実務で活用しやすい点が良いと感じました。 成約率との関係は? さらに、営業活動のように暴露機会と成約率、またユーザーの購買意欲と成約数との因果関係を数値化する場合、代表値だけでなく標準偏差による散らばりを検討することで、ユーザーの傾向をより正確に導き出すことができると考えています。まずは仮説思考から取り組む姿勢が大切だと再認識しました。 グラフの魅力は? 最後に、提供される表形式のデータを様々なグラフで可視化し、検証のヒントを得る点も魅力的です。従来の平均値や中央値に加えて、標準偏差などの散らばりを取り入れることで、ユーザーの購買情報をより明確に把握できる可能性が広がっています。定性情報をいかに数値化してデータ分析に活用するか、その工夫が今後の課題であり、挑戦してみたいと感じました。

データ・アナリティクス入門

データ分析で見つけた新たな視点と仮説の立て方

データ分析の進歩を実感 これまでの実践演習のおかげか、ライブ授業の例題の際、自分が受講以前よりデータの着目ポイントがわかるようになったこと、仮説を複数出すことが怖くなくなっていたことに気付きました。また、ライブ授業の中で出てきた「やみくもに分析しない」という点も、性格上ハマりやすい沼だと思うので、優先順位を考えつつリソース配分を意識しながら分析したいと思います。 ディスカッションでの学び方とは? ディスカッション形式で例題を解くことで、人によってデータの見方や感じ方が違って面白かったです。一人でこっそり分析するよりも、複数人で話し合いながら進める重要性を感じ、実務でも活かそうと思いました。 新規事業におけるフレームワーク活用 新規事業を担当しており、これから多くの施策や企画を立ち上げる機会が増えると思うので、その際には効果的な施策を打ち出すために、問題解決のフレームワークを使って体系的に進めていきたいです。今回の講座で学んだ大きな収穫の一つは「振り返ることの重要性」です。グループワークを通して意見を交換し、その際に振り返りとして自分の考えをまとめる時間があったことが学びに繋がりました。施策を打った後も、その振り返りを必ず行い、次に活かせるようにしたいと考えています。 データをどのように活用すべき? 今後も引き続きデータ分析の講座や研修を積極的に受けたいです。実務レベルでは、常に仮説を持ち、複数の切り口からデータを分析・比較し、結果の検証を行うという順番を意識しています。一部のデータだけを見てすぐに判断しないように気を付けたいと思います。

「仮説 × 検証」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right