データ・アナリティクス入門

数値分析の極意を学び事業改善へ

分析とは何を指すのか? 目的を明確にしないと、意味のないただの計算・数値になってしまいます。「分析」とは「比較」であり、比較の条件をそろえることが大事です。分析は考察までがセットです。この点を理解することで、意味のある数値やグラフの種類を適切に判断できるようになると思いました。 データをどう活用する? 例えば、WEBサイトやSNSの効果測定では、数値が自動的に出てきますが、それをどう考察するかが重要です。また、アンケート結果の分析では、目的を整理してから項目や回答のさせ方を決めないと、分析できないデータや目的に合わないデータになってしまいます。 明確化の重要性 分析の目的・ゴールを明確化することを最重要視することが肝心です。目の前の数字の増減だけにとらわれず、分析手法やその後の考察までを意識してアンケート設計を行う必要があります。 学んだことをどう実践する? 業務上、数値分析をする機会が度々あるので、今後は学んだことを意識しながら分析手法や報告内容を改善していきたいと思います。

クリティカルシンキング入門

業務効率アップ!資料作成の極意

情報整理の重要性とは? 相手に伝えたい内容を考え、相手に伝わるための情報と表現の整理に時間をかけることが重要だと感じました。さまざまな業務がある中で、資料作成に多くの時間を費やす点は気になるところですが、順序立てて情報を整理することで、多少時間がかかるのは仕方ないことだと再認識しました。また、それぞれのフォントや色の意味を理解し、活用することも考えています。 報告資料作成の工夫は? 人事関連の政策で部のメンバー、社員や役員に社内の人員状況に関して報告する際の資料作成に役立つと感じました。その際、自身が伝えたいことだけでなく、相手が気になっている内容も予測して作成することで、その後の議論が成果につながるでしょう。 データ可視化のポイントは? グラフ作成や資料作成の際には、資料を通して伝えたい内容を考え、それに合わせたグラフを用意できればと思います。データをまず理解するためにグラフを作成し、その後にどのような結果を出すかを考え、必要なグラフや資料を追加で検討することが大切だと感じました。

データ・アナリティクス入門

仮説思考で拓く不動産プロジェクトの未来

効果的な仮説立案方法とは? 仮説を立てる際には、3C(市場・顧客、競合、自社)と4P(商品、価格、場所、プロモーション)のフレームワークを使うことで、網羅的に考えることができます。その後、仮説を立案し、事実に基づいて仮説を絞り込む必要があります。仮説は結論の仮説と問題解決の仮説に分類できます。 データ整理のメリットは? 仮説検証の際に、自分の仮説を多く立てることができるようになります。また、手持ちのデータがどのフレームワークに関するものかを整理できるようになると、プロジェクトを始める際に手持ちのデータの種類と不足しているデータを把握できます。特に、自社や顧客については理解が深まっているものの、競合のデータについては入手が難しいため、今後の課題として力を入れたいと考えています。 不動産PJでの仮説思考は? 不動産に関わるプロジェクトを行っているため、海外の宅地購入や新規事業のPJを評価する際にも同様の仮説思考が役立ちます。特にエリア性と価格妥当性に対する理解を深めておきたいと思います。

クリティカルシンキング入門

これで自分も変われる!ナノ単科の魅力

他の視点をどう取り入れる? 自分一人だけの発想には偏りがあるため、他の視点も取り入れることが重要です。また、問題解決に飛びつくのではなく、しっかりとした分析を行うことが求められます。 効果的なメッセージ伝達法 伝えたいメッセージが分かりやすい文章やグラフを作成するためには、ひと手間を加える努力が必要です。主張の根拠を明確にし、三つの問いに立ち戻ることも大切です。 業務効率改善のためにできることは? 業務効率を改善するためには、現状の問題点を共有し、全員の意識を変革させる活動が重要です。進捗が悪い項目については、その理由を整理し、分かりやすく伝えることで、活動内容を明確にしていくことが求められます。 進捗遅れの改善策をどう探す? 進捗の遅れている状況はデータ化し、改善点をグラフ化して目で見て理解しやすくすることが効果的です。また、改善についての問いを立て、データを基にした根拠とともに共有化することが大切です。活動を明確化し、継続して検証を繰り返すことが、真の改善につながります。

クリティカルシンキング入門

客観思考で挑む原因究明

客観視できていますか? 主観的な判断を排除することの重要性を学びました。私たちの思考には必ずしも客観的な視点が備わっているとは限らないため、答えが導かれた後も「なぜその結論に至ったのか」「本当に正しいのか」を問い続けることが大切だと感じました。 他の原因も見えてますか? また、仕事で問題が起きたときに原因を明確にする際、この考え方が役立つと実感しています。すぐに原因と思われる事象に気が付いたとしても、他にどんな原因が存在するのか、なぜその事象が発生したのか、定量的なデータを用いて誰が見ても納得できる説明ができるかを念入りに考える必要があります。 多角的に考えていますか? さらに、問題発生時には、客観的な判断に必要な情報をリストアップし、思考が一面的にならないように努めています。ロジックツリーを活用して原因を深堀りし、上位者や他部署の視点からもチェックを行うよう心掛けています。最後に、取り組んだ結果を振り返ることで、次の課題解決に向けた改善策を見出す重要性を再認識しました。

データ・アナリティクス入門

自分を磨くデータの力

どうして受講したの? この講座を受講した理由は、自分が何のために学ぶのか、また今後どのように仕事に活かすかを明確にするためでした。受講を通じて、自らの目的を整理し、データ分析の知識を仕事に反映させるための考え方を身に付けることができたと実感しています。今後も積極的に学び、習得した知識を実践で活用していきたいと思います。 SNS分析はどう役立つ? また、私の仕事にSNS分析を取り入れることで、顧客の声や市場のトレンドをリアルタイムで把握し、戦略に反映させることができると感じています。具体的には、投稿への反応を分析することで、ブランドイメージや顧客満足度の向上に向けた改善点を明確にできると考えています。 伝え方に自信はある? さらに、自分が学んだ内容を同僚にもシェアし、職場全体でスキルを高める取り組みをしていきたいです。これからは、データ分析の基本である「比較なり」という格言を心に留め、どのような目的でどんなデータを集め、何を比較するのかという視点を常に意識しながら進めていく所存です。

クリティカルシンキング入門

データ分析の新発見!MECEの秘密

データ分解の新しい視点は? データや物事を分割する際には、一度分解して終わりではありません。別の観点でも分解することで、新たな気づきを得ることができます。MECEの分け方には層別、変数別(因数分解)、プロセス別の三種類が代表的です。まずは大まかに分け、その後に細かく分解することが重要です。 効果的な伝達方法とは? 自分の考えを相手に伝える際には、ピラミッド・ストラクチャーを使って複数の観点で整理することが有効です。このとき、まず層別、変数別(因数分解)、プロセス別で瞬間的に整理できるようにトレーニングすることが重要です。細かい切り口でいきなり分けず、大まかに分けることから始めることが推奨されます。 自主演習でスキル向上を? さらに、ピラミッド・ストラクチャーの自主演習では、一つのパターンだけで終わらず、二つ以上の別解を出すように心がけます。瞬発的に切り口を見つける自主演習として、毎日通勤時に自分にお題を出し、層別、変数別(因数分解)、プロセス別で切り口を出す練習をすると効果的です。

クリティカルシンキング入門

仮説検証で視野を広げる思考法

切り口で見える? 複数のデータから一つの仮説を立てる際、切り口を変えると見え方が異なることがあります。これは、文章や言葉だけでなく、数字を分析する際にも思考が偏ることがあり得ると感じさせられました。今見えている情報に基づいて判断することに疑問を持つきっかけとなったと思います。 分析で何が見える? 事務リスク発生の原因分析においては、数値を扱う際の前処理やカテゴライズの過程で切り口を変えることが有効だと感じました。残業時間の増加や処理目標未達成の原因を分析する際にも、同様の手法で切り口を変えてカテゴライズすることで、見過ごされている問題を発見できる可能性があると思いました。 区切ると何が見える? 原因分析時のカテゴライズでは、単にキリのいい数字で区切るのではなく、仮説を立てた上で細かく区切ることが重要です。また、一度作業を終えたらそれで結論とせず、他に考えられる要素がないか一度立ち止まることも大切です。全体の定義を明確にし、漏れや重複がないように意識して区切ることを心がけるべきです。

データ・アナリティクス入門

プロセス見直しで未来を切り拓く

どうやって原因究明? 原因を特定するためには、分析対象を複数のプロセスに分解し、各段階で明確な問題箇所を探ることが重要です。人の行動に即したプロセス設定を行うと、問題の箇所が特定された後の改善策の検討もスムーズに進むことが分かりました。 なぜ事前に決定すべき? また、What、Where、Why、Howといった基本的なステップと同様に、プロセスの設定も仮説検証に入る前に決め、その内容を関係者間でしっかりとすり合わせる必要があります。たとえば観光客の減少の原因を探る場合、ユーザーがどのように情報を収集し観光地を選んでいるかというプロセスと、現状で手に入っているデータがどの段階で取得されたものかを突き合わせることが求められます。 データ整理の要点は? さらに現状分析においては、最初に幅広いデータを集めることが大切です。各データが持つ性質や項目、定義について周知するとともに、ファネルに沿ってデータの分類や分析を進め、必要なデータの補完を行うといった段階的な準備が成功の鍵となります。

アカウンティング入門

企業を深く知る!新視点の財務分析

なぜ財務表を学ぶの? ライブ授業では、ある企業の事例を通して、財務諸表を詳しく見ることの重要性を学びました。これにより、損益計算書や貸借対照表の理解を深めることができ、この1か月以上の学びを振り返り、今後の学習方法についても考えることができました。 どうやって企業理解? まず、顧客企業の財務分析においては、企業のホームページや採用情報、関連出版物、さらにはヒアリングを通じてそのビジネスモデルをしっかり理解していきたいと思います。これによって、単なるテンプレートに基づく定量分析ではなく、具体的に何を分析したかが明確になるような分析が可能になると考えています。 仮説検証の流れは? 次回定量分析を行う際には、まずデータを収集するのではなく、企業のホームページや採用ページ、出版物をもとに、企業の人員構造や財務状況について仮説を立ててみます。その後、この仮説を検証するために定量分析を実施し、特に仮説と異なる結果が出た場合には、顧客への報告時に質問や議論を重ね、理解を深めていく予定です。

クリティカルシンキング入門

視点を広げるセグメント分析の挑戦

切り口は十分ですか? 切り口については、もれなく重複なく組み合わせ、詳細化できていました。しかし、視点が不足していることに気づきました。例えば、お客様の分け方や、店舗側の情報の分け方など、他にないかと自問を繰り返し、新たな示唆を模索したいと思います。 社内情報の組み合わせは? お客様の情報に基づく分解は行っていたものの、社内の情報、例えば地域、経験年数、所属組織などを組み合わせることで新たなセグメントを作れないか試してみます。また、差がないことが判明することも価値のある情報だと理解しました。そこで、まずは試してみるという姿勢で臨むことにしました。 データの傾向はどうですか? 具体的には、まず切り口の分類として、お客様情報、営業社員情報、商品情報などを挙げ、それぞれの分類を詳細化します。そして、来週月曜日にデータに適用して傾向を確認する予定です。さらに、詳細化を進めるために切り口の組み合わせを試し、数字だけでなくグラフで視覚化することで、全体像を捉えたり、比較しやすい状態にします。

データ・アナリティクス入門

データ分析の基本を押さえる重要性

データ分析の本質とは何か? データ分析は「比較すること」が本質であり、常に「Apple to Apple」と適切なもの同士を比べる重要性を学びました。これを達成するためには、実際の分析に移る前に、分析の目的を明確にし、仮説を立てることが大切であると感じました。 仮説の質をどう改善する? データ分析の前提整理や仮説を立てることには既に意識を持ちつつありますが、仮説の質にはまだ改善の余地があると考えています。データ分析を行った結果、自身の仮説が間違っていることに気づき、仮説を立て直すことが多々あります。経験を重ねることで一定の改善は見られるかもしれませんが、体系的に仮説を立てる方法を学びたいと思っています。 効果的な振り返り方法は? 振り返りをきちんと行い、適切な比較対象が選ばれていたのか、仮説がしっかり立てられていたのか、データ分析の目的が明確に言語化されていたのかを確認することが重要です。脳内でチェックリストを作り、それを基に実践し、反復練習を積むことが必要であると感じています。

「データ」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right