クリティカルシンキング入門

問題の本質を探る思考の鍛錬

本当の課題は何? 顕在化している問題をそのままイシューとして設定するのではなく、なぜそれらが生じているのか、本当の問題は何かを分析することが重要だと感じました。なぜなら、顕在化した問題に対して対症療法的なアクションを取っても、根本的な解決にはならないことが多いからです。しかし、本質的な課題を見つけるのは今の私にとって非常に困難であるため、思考を鍛える練習が必要とも感じています。 仕事のバランスはどう? デイリー業務と企画業務のバランスを考える際や、残業時間削減に向けた対策の検討など、さまざまな場面でこのアプローチは役に立つと思います。顕在化した問題に隠れている潜在的な問題を深く分析し、正しい対策を探っていきたいです。 事実の関連はどう見る? 見えている情報だけでイシューを設定するのではなく、なぜその事象が発生しているのかを考えるようにします。また、1つの事実から安易に結論を出すのではなく、複数の事実を関連づけ、問題の本質を考える癖をつけたいと思っています。情報を分析する際は、データを加工し、複数の視点からの検討を行うことも重要です。

データ・アナリティクス入門

チームで切り拓く未来への一歩

データ検証の意味は? データを検証し、仮説を立てた上で再びデータを確認する―リスクを抑えながら新たな可能性を模索する問題解決のプロセスについて学びました。その中で、A/Bテストの活用についても知ることができました。 実践規模の見極めは? 仕事に活かす方法として、プロセスをどの規模で実施するかが、データ抽出の視点や意思決定の重要度によって左右される点に気付かされました。企業の規模によっては、実行が難しい場合も出てくると感じました。 チームでの一歩は? そこでまずは、自分のチーム内で進められる範囲から取り組んでみようと思いました。 チーム育成のポイントは? チーム内での人材育成プロセスに、データの検証と仮説の立案を取り入れ、今後の計画に反映させたいと考えています。近年、チームメンバーとなる人の出身部署が多様化しているため、前提となる知識やその特性にも違いが出ていると感じます。これにより、それぞれの出身部署や知識の有無を的確に把握し、最終的には一人前のチームメンバーとして成長するプロセスを、より効率的に進めたいと思います。

データ・アナリティクス入門

目的が明日のヒントになる

問題点は何でしょう? 何が問題かを明確にし、結論のイメージを持ちながら取り組むことが大切だと感じました。何を解決したいのかを考えることで、目的に立ち返ることができるため、数字をどのようなグラフで表現するか悩む場面でも、考え方の整理が進みました。データ分析においては、仮説思考が基本であるとも実感しています。 プロジェクトの目的は? 業務改善プロジェクトに取り組む際には、まず目的の設定が不可欠です。進める中で何を解決したいのか、そして最終的な結論のイメージを持ちながら作業を進めたいと考えています。現状では、システムや運用の活用率といったデータが中心ですが、活用と非活用という単純な区分のみで目的に沿った分析が可能かどうか、再度検討する必要があるように思います。 誰にでも分かる目的は? 目的設定については、誰にでもすぐにイメージできるような分かりやすいものにすることが重要です。現在取り扱っているデータから新たな気づきが得られないか、また、ほかのデータを追加することで見えてくる可能性があるかどうかにも注目していきたいと思います。

クリティカルシンキング入門

データを多角的に分析する力を養う

データの分解にどう立ち向かう? 今回、数値データを扱う際には、データを正確に整理し、重複や漏れがないように分解することを心がけました。例えば、年齢別のカテゴリ分けや売上を単価と数量に分解すること、あるいは工程を細分化することなど、多角的な視点で情報を分類することを意識しました。 顧客分析で重点をどこに置く? このようなデータの分解方法は、ソリューション販売の戦略を構築する際に非常に有用だと思います。特に、顧客層を地域別や人口密度に基づいて分析することで、どこに重点を置くべきかが明確になります。当社製品をどの地域や規模の顧客に訴求するのかを見極めることが、営業エリアやターゲットの設定に役立つと感じました。 営業活動の現状をどう見直す? 現状の営業活動についても、業界全体の数値データをいろんな視点で分解して分析しようと考えています。この分析結果をもとに、現在の営業状況とどのように一致しているか、またはどこでズレが生じているかを見極めたいと思っています。これにより、正しかった施策と改善が必要な点がより具体的に把握できると考えています。

データ・アナリティクス入門

分析目的を明確に!データ活用の極意

分析の目的設定はなぜ重要? 「分析とは比較なり」が今回の講義の究極のゴールであるが、それだけでは不十分である。分析の目的をしっかり設定し、自分なりに仮説を立て、それに必要なデータを用意することが重要だ。また、適したグラフを選ぶことも必要である。 結果を伝えるための見せ方とは? 分析の目的を念頭に置きつつ、最終的にはデータ分析を基に説明や説得を行うため、見せ方にも気を配る必要があると感じた。 データ分析の活用方法は? 現在、保証契約のデータを分析している。目的は、経営陣に過去の実績を報告することと、顧客に実績を示すパンフレットを作成することである。それぞれの目的を追求すると、保証契約制度を推進する施策の検討や実績アピールによる利用促進が考えられる。これらの目的を念頭に、どのデータを分析すべきか、どう表現すべきかを考えることが大切だ。 記憶に残る工夫はどうする? 目的に立ち返ることを忘れないようにしたい。具体的には、PCの壁紙や手帳など、日常的に目にするものに「分析とは比較なり」と記入しておき、記憶のフックを作りたいと思う。

データ・アナリティクス入門

営業部門と協働し、データ分析の切り口を探る学び

定量分析で何が重要? 定量分析の重要性と、分析では比較や仮説、目的が重要であることを学びました。実務においては仮説を立てる能力や、分析において適切な切り口を見つけることが求められます。このためには、分析対象に対して強い興味を持つことが大切だと感じました。 問合せ増加の施策検討 現在、私は担当しているWEBサイトからの問い合わせ数を増やすための施策検討を行っています。問合せの生データやサイトのアクセスログなど、使用可能なデータは整っています。また、SFAデータを分析し、2025年度の営業施策を検討中です。こちらについてもSFAデータにアクセスできる状況にあり、今後加工は必要ですが、元データは揃っています。 SFAデータ分析の進め方 まずは、SFAデータの分析から着手する予定です。SFAデータには多くの分析切り口が存在しますので、目的や仮説を明確にするために、いきなり手を動かすのではなく、営業部門の担当者を巻き込むことにします。具体的にはどういった分析が求められるのか、現場で役立つかどうかを相談することが大切だと考えています。

データ・アナリティクス入門

データ分析にAI活用!新たな発見の連続

ChatGPTを活用する意味は? 実践演習がメインの週だったが、データ分析は答えがない世界だと感じているので、自分で考えるだけではなくChatGPTを共に使用して問題解決を試みた場合、どのような成果が得られるかに焦点をあてて演習に取り組んだ。普段は自分の頭で考え一人で結論を出していたが、そのことに限界を感じていたため、今回の受講はAIを活用する実践の場として非常に学びが多かった。 AIの活用で得られる視点は? どれだけ訓練を積んでも、人間である以上、自らの思考には必ず偏りがある。多面的な視点でデータ分析を行うことが問題解決の第一歩であり、AIを活用して多くの視点を得ることが有効だと改めて気づくことができた。これからは、普段からAIを十分に活用するよう心掛けたい。 AI相談の工夫を学ぶ データを分析する際、必ず一歩立ち止まり、AIに素直に相談してみるようにする。AIをデータ分析のパートナーとするため、相談の仕方を工夫することも学んだ。正解を出すことを目的とするのではなく、自分の思考を広げるためのAI活用を身につけていきたいと思う。

データ・アナリティクス入門

仮説で開く未来への扉

仮説の意義は何? 普段は無意識に仮説を活用していましたが、今回改めて仮説について深く考える機会となりました。問題点に対してフレームワークを用いて仮説を立てることで、対応が迅速になるという認識はこれまであまり持っていなかったため、今後はより丁寧に仮説を構築し、その正しさを確認しながら業務に取り組んでいきたいと考えています。 仮説の落とし穴は? 実際に仮説を立てる際、つい思い込みに基づいた仮説になってしまうことが印象に残りました。そのため、クリティカルシンキングを意識し、より網羅的に状況を確認するよう努めます。また、困りごとが発生した場合、ユーザーが直面している問題をフレームワークを活用して洗い出すことも重要だと感じています。特に4Cの視点はこれからも大切にしていきたいです。 施策はどう進める? 新しい施策を検討する際には、4Cを活用して仮説を構築し、その仮説に基づいて必要なデータを収集し、提案へと繋げていくつもりです。データを集める際は、自分のバイアスに左右されず、幅広い視点で情報を整理するよう心がけたいと思います。

データ・アナリティクス入門

データ分析で差をつける!実務のヒント

どうして比較が鍵? 分析は比較です。判断基準には、Aがある場合と無い場合を比較することが重要です。適切な比較対象を選ぶことが鍵であり、特に分析する要素以外の条件を揃えること(Apple to Apple)が必要です。分析の目的に応じて比較対象を選定します。 実務でどう活かす? 実務では、委託業者の選定などにおいて、この知識が非常に役立つことがわかりました。データ分析は比較が基本ですので、何のためにどのようなデータが必要なのかを明確にし、仮説を立てることが重要です。これにより、データ分析の目的をはっきりさせ、早速実践に移したいと思います。 コンテンツをどう提案? ラーニングイベントのサーベイ結果をもとに、今後提供可能なコンテンツをいくつか提案する予定です。実践プロセスとして、まずはデータ分析の目的を仮説に基づいて明確化し、次に判断基準を具体化します。具体化のステップとしては、Aがある場合と無い場合を比較し、適切な比較対象を選ぶこと、また分析したい要素以外の条件を揃えて(Apple to Apple)、目的に沿った比較を行います。

データ・アナリティクス入門

平均値の裏に隠れた真実

計算方法で何が変わる? 動画を通じて、平均値と言っても採用する計算方法によって分析結果が大きく異なることを実感しました。これまで数値のばらつきや外れ値についてあまり意識していなかった自分にとって、正確な分析を行うためにはこれらの点をしっかり捉える必要があると感じました。平均、加重平均、中央値の使い分けについては理解していたものの、幾何平均や標準偏差という手法は新たな気づきとなりました。 例外ケースはどう捉える? また、契約顧客に関して解約率やアップセル率を分析する際、まれに契約金額が大きく、どうしようもない理由で解約となる場合や、一時的にアップセルが成立する場合があります。そのような際には、これらのケースを外れ値(ばらつき)として扱うことにより、より現実に即した数値で分析できると感じました。 手法の選び方はどう? 今後、定量的なデータ分析を行う際には今回の学びを活かし、初めは単純平均や加重平均など、さまざまな手法で計算結果を出してみることで、それぞれの数値の違いを実感しながら、より精度の高い分析を心がけていきたいと思います。

データ・アナリティクス入門

論理の力で切り拓く学びの軌跡

何を明らかに? まずは、最初のステップとして「何を明らかにしたいか」を再認識しました。what‐where‐why‐howの視点で、どの問題にどう向き合うかを意識する必要があると感じました。 ロジックの使い方は? また、whereを検討する際、単に箇条書きで列挙するのではなく、ロジックツリーなどを活用することで、漏れなく観点を広げられることが重要だと認識しました。 実践はどう進める? すぐに実践できるイメージはまだ固まっていませんが、まずは身近な問題を洗い出し、関連するデータを収集しながら、常に何を知りたいのかを考えていこうと思います。実務への落とし込みはまだ模索段階ですが、具体的な数字を使いながら学んだ内容を繰り返し適用することで、定着を図りたいと考えています。 業務整理はどうする? 改めて、自身の業務における問題点や知りたい情報を明確にするため、業務内容の整理が必要だと感じました。また、仮説を設定する際には、フレームワークだけでなく思考プロセスも磨く必要があると実感し、積極的にスキルを向上させていこうと思います。

データ・アナリティクス入門

オンライン手続き改善のデータ分析方法

データの見せ方は? 分析の基本は比較であり、どのデータをどのように加工するとわかりやすいかを考えながら進めることが重要です。データにはさまざまな種類があり、それぞれに応じた加工やグラフの見せ方があります。データ分析を始めるにあたっては、「目的」の確認や「仮説」の設定とその検証が欠かせません。 オンライン離脱はなぜ? 私たちのチームでは、お客様に対して紙の手続きではなく、ウェブサイトでのオンライン手続きを推奨しています。しかし、オンライン手続きを行っているお客様がどの段階で離脱しているのか、また、紙を取り寄せるお客様の属性や動機がどのようなものかを理解し、分析する必要があります。 改善点の見極めは? 具体的には、オンラインで離脱しているページやそのユーザーの属性、さらに紙手続きを行っている方々の属性や動機に関するデータを収集し、オンライン手続き率を向上させるためのボトルネックを特定することが目指すべきゴールです。仮説を立てながら慎重にデータを分析し、検証するプロセスを通じて、この課題に取り組んでいきたいと思っています。

「データ」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right