データ・アナリティクス入門

仮説×データで未来が変わる

仮説とフレームワークは? 本講座では、問題解決のプロセスにおいて、スピードと精度を向上させるために、仮説を立てながら分析を試みる重要性を学びました。また、3Cや4Pといったフレームワークを効果的に活用する方法も理解できました。 必要データはどうする? 仮説に基づいて必要なデータを抽出し、場合によっては新たにデータを取得する必要があることも実感しました。既存のデータ分析にとどまらず、サーベイの実施などによって分析に不可欠な情報収集にも役立てることができると感じました。 多角的観点は何故? さらに、分析の視点は単に数値やデータを検討するだけでなく、データ整備や企画立案の段階でも重要であるという気づきを得ました。今後、業務のあらゆる場面でこれらの視点を取り入れながら取り組んでいきたいと思います。

クリティカルシンキング入門

会話で広がる客観視点の世界

なぜ客観視が必要? 客観的に物事を捉えるためには、訓練が必要だと学びました。自分の思考のクセを理解するだけでなく、他者と恐れずディスカッションを行うことが、より客観的な視点を養う一助となるという新たな視点を得ることができました。一人で考える場合と比べ、会話を通じて自分の話し方や考え方の癖が見えてくるため、こうした対話の重要性を実感しました。 本当に今の方法? また、クリシンを確実に身につけるためには、まずは徹底して考え抜く習慣をつける必要があると感じました。仕事においては、直前の「やらなければならないこと」があると、つい過去の方法に頼ってしまいがちです。しかし、かつてと現状では状況が大きく異なることも多いため、本当にその方法で十分なのか、他に有効な解決策はないかと自問し続けることが大切だと考えています。

データ・アナリティクス入門

データ分析で仮説と検証を学ぶ

仮説の立て方を見直すには? 今まで、データ分析において仮説から検証のプロセスをなんとなくで行っていたが、複数の仮説を立てることや、網羅性を持たせることはあまり意識していなかった。また、立てた仮説の検証だけでなく、反対の事象を裏付けるデータも収集することで、より説得力のある仮説検証ができる点も意識すべきだと感じた。 データ分析を業務にどう活かす? 今後、業務でデータ分析を行う際には、仮説立てから検証までのプロセスを意識的に組み込むようにしたい。現在取り組んでいる運転資本の改善についても、問題がどこにあるのか(Where)を仮説立てし、既存のデータから分析を行うようにする。そして、Whereが特定できた後には、なぜその問題が生じたのか(Why)の仮説を立て、その仮説を立証するための分析方法を検討するつもりだ。

データ・アナリティクス入門

実務に効くプロセス分解の秘訣

どこで分割すべき? 今週はプロセスに分けて分析する方法を学びました。Web解析の基本知識があるため、内容は理解しやすかったです。特に、Web以外の分野でプロセスに分解して分析する場合、どの段階で分割するかが非常に重要だと感じました。効果的でないプロセス分割をしてしまうと、いかに情報を分析しても課題解決に結びつく情報提供ができなくなるため、プロセスの分離設計が不可欠だと実感しました。 A/Bテストはどう? また、A/Bテストについては実施が必要だとは思いつつも、実務ではリソース不足などの理由で2パターンの検証が難しいケースが多いと感じています。そのため、実務ベースでは別の手法を模索する必要があると考えます。勉強のために、実際に行われたA/Bテストの具体的な事例があれば、ぜひ共有いただきたいです。

クリティカルシンキング入門

論理的プレゼンで成功する秘訣

ピラミッドストラクチャーの効果は? 新規企画の社内説明の際、ピラミッドストラクチャーを意識しました。まず、決裁を取りたい内容をはじめに記載し、その理由付けを行い、さらにその根拠を示しました。この手法を用いることで、論理的に整理されたプレゼンテーション資料を作成できました。 社内説明での活用法は? 社員向け説明の際も同様にこの方法を活用できると感じました。次回の社内説明のプレゼンテーション資料を作成する際も、同じようにピラミッドストラクチャーを意識した設計図を作成する予定です。 情報を伝えるコツは? 各理由付けや根拠の説明スライドについて、1スライド1キーフレーズを基本として、一文を長くしないよう注意しました。これにより、情報が具体的で理解しやすいプレゼンテーションが可能となりました。

データ・アナリティクス入門

実践で知るデータ分析の極意

振り返りの授業内容は? 今週は、これまでの学びを総合的に振り返る機会となりました。ライブ授業の録画を視聴し、講師や参加者の意見を聞きながら、実践的な課題に取り組む中で、分析の基本的な考え方や手順をストーリーとして学ぶことができました。最初に何をするのか、どのような課題に着目するのか、データの収集方法や加工の仕方、そしてどのように結論に結びつけるのか、という流れが非常に分かりやすかったです。 比較考察ってどう考える? また、社内にある商品の魅力度や売上の既存データを単独で捉えるのではなく、何らかの基準と比較しながら考察する重要性を再認識しました。問題の要因分析においては、一面的な意見に頼らず、ほかにどのような可能性があるのかを自分なりに掘り下げてみる姿勢が大切だと感じました。

データ・アナリティクス入門

角度変えて見つける学びの真髄

多角的に見る大切さは? 物事は一方向からだけではなく、さまざまな角度から捉えることで本質に迫ることができます。一つのデータだけでなく、多くの情報を比較検討しながら分析を進める必要があり、見極める力を養うことが大切です。 データ活用のポイントは? 定量データを扱うことが多い中で、そのデータをどう活かすかを常に検討することが求められます。正確なデータの取り扱いをはじめ、集めた情報を蓄積し、前後の変化を比較することが、分析力向上の基礎となります。 数字のパワーを知る? また、分析により提案が有力な判断材料となるよう、数字の扱い方や活用方法にも工夫が必要です。数字が持つパワーは、その扱い方次第で大きく変わるため、具体的な活用策を考えることが重要です。

データ・アナリティクス入門

あなたも変われる学びの瞬間

データをどう活かす? 分析を行う際は、常に目的を意識しながらデータと向き合うことが基本です。データは単なる数字ではなく、素材と捉え、適切な調理方法や飾り付けで仕上げるように結果の表現手法を工夫する必要があります。各データの特性に合わせた分析プロセスを経ることで、他社にもわかりやすく咀嚼・理解される結果を得ることができます。 サポート状況はどう? また、作成されたサポートケース数の増減やカスタマーサーベイの結果を、製品、顧客、担当エンジニアなど複数の要素を組み合わせながら分析します。こうした取り組みによって、サポートチームが健全にオペレーションできているかを確認し、もし課題が見つかった場合には、その解決に向けた具体的なプランの策定も行います。

データ・アナリティクス入門

比較が生む新たな気づき

分析比較の重要性は? 今回の講義を通じて、分析の基本は「比較」にあると学びました。業務で調査データを扱う中で、過去のデータとの比較は無意識に行っていたものの、今回意識的に言語化することでその重要性を改めて実感しました。 データ整理ってどう? また、データの要素を整理する方法も学び、意味のある値とそうでない値を見分けることの大切さが身に染みました。これまではその違いを意識していなかったため、新たな視点を得る良い機会となりました。 比較で何が見える? 今後は、業務において製品の売上や調査結果、製造パラメータなどさまざまなデータを扱う際、必ず過去の事例や他社のデータと比較し、違いを明確に伝えることを心がけていきたいと思います。

クリティカルシンキング入門

結論先行!伝わる話し方の極意

自己主張の整理はどう? 今まで自分の主張を整理せず、思いつくままに話していたと気付くことがありました。正しい日本語や手順を意識し、伝えたい内容を整えて主張することで、相手に理解してもらいやすくなると感じています。 職場での伝え方はどうする? また、職場で自身の考えを伝えたり、問い合わせに回答する際に、この方法が役立つと考えています。まず結論を伝え、その後に理由を説明し、簡潔に話すことで、主観が入りにくく論理的な説明ができると思います。さらに、相手の反応を見ながら説明することも大切だと実感しました。 理由の選び方は何が鍵? 理由付けを行う際に、どの理由が相手に響くかをどのように選べばよいのか、他の意見もぜひ聞いてみたいです。

クリティカルシンキング入門

日本語の壁を乗り越える!伝わる文章術

文章の伝達で何を感じた? 自分の書く文章が、誤解を招く表現になっていることや、相手に正確に伝わっていない点があると再認識しました。文章を書く際に、日本語の難しさや主語と述語の関係の重要性を改めて実感しています。 どう書けば誤解は無くなる? 相手に確実に伝えるためには、無理に一つの文にまとめず、必要に応じて文を分けることが大切です。誰が何をするのか、主語を明確にし、文章が論理的に展開されるよう注意を払っています。 指示伝達の改善方法は? さらに、職場でチームメンバーに指示を出す際は、迅速かつ正確な意思伝達が求められます。そのため、余計な複雑な表現を避けて、箇条書きなど具体的な手法を用いることも有効です。

データ・アナリティクス入門

仮説が切り拓く新たな視点

仮説設定はなぜ必要? データを加工する前に、まず仮説を立てることが非常に重要です。分析は目的があって成り立つため、単に数値や結果そのものにとらわれず、目的に照らした適切な加工方法を検討する必要があります。数値をそのまま受け取るのではなく、自分の観点を加え、他にどんな見方ができるのかという視点の多様性を意識します。また、確からしい仮説の立案のみならず、素早く検証するスピード感も大切です。 分析視点はどう選ぶ? 月次や週次の業務分析においては、どの角度からデータを切り分けるのが最も適切かを常に考慮します。分析後は、まとめた内容が本当に正しい観点に基づいているか、過去の踏襲に陥っていないかを再検討することが求められます。

「本 × 方法」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right