データ・アナリティクス入門

データ分析で見つけた成功への鍵

分析の基本は比較にあり? 「分析とは比較である」ということが、今まで感覚的に行っていた私にとって、必須であると改めて理解しました。また、多くの人の前でプレゼンテーションを行うため、データを分析する際には、まず「仮説」を構築した上でデータ加工に取り組んでいました。そのため、明確な目的や主張のない分析は行っていませんでしたが、一方で期待していた比較結果が得られなかった場合には、仮説を素直に見直すことの重要性を認識しました。 新しい業務への挑戦 普段の業務では、「分析とは比較である」という意識が習慣化しています。しかし、これから新しい業務に挑むにあたっても、この「比較」を意識し続けたいと考えています。特に、生存者バイアスのかかったデータに基づく業務になる可能性があるため、失われているデータとの比較を心がけたいと考えています。 成功と失敗事例の見極め あるプロジェクトでは協力業者の選定が多数必要となりますが、彼らが持参するのは成功事例が多いと予想されます。そのため、成功事例の裏に隠れている失敗事例を手に入れ、成功事例だけに基づいた「比較」に陥らないよう注意したいと思っています。直感的に考えたことを「仮説」とし、その後、生存者バイアスを避けた適切なデータを比較・分析し、プロジェクトの成功を目指したいと考えます。

データ・アナリティクス入門

仮説で突き抜ける分析の世界

分析の基本を確認? この講座では、分析とは単にデータをそのまま受け入れるのではなく、要素を分類し比較する作業であることを学びました。現状を鵜呑みにするのではなく、多角的に考え、目的や仮説を明確に持って取り組む重要性が印象に残りました。 分類と比較の仕方は? 具体的には、まず分析の基本として、データを分類することが必要だと再認識しました。そして、その分類された情報を比較することで、より深い理解が得られると感じました。さらに、明確な目的や仮説を持つことで、分析の取り組み方が一層意識的になり、有益な示唆が得られる可能性が高まると実感しました。 実務での分析戦略は? また、現職の業務においては、クライアント向けのマーケティング戦略を立案する際、膨大なデータの中から適切な視点を見出し、効果的な分析を行うことが求められます。目的や仮説を明確に持ちながら、意識的な比較検証を進めていくことで、売上に貢献できるような分析手法を確立していきたいと考えています。 着眼点を模索中? さらに、与えられたデータのどの部分に着目すべきか、どの分析手法を適用すべきかについては、まだ模索している部分もあります。今後は、理論を学びながら実務に直結する知識やスキルを身につけ、より具体的な分析ができるよう努力していきたいと思います。

データ・アナリティクス入門

業務に役立つ分析スキルを身につける方法

予測を立てる重要性は? グラフなどの資料を見る際、自分なりの予測を立て、仮説を立てて実態との違いを確認することは重要です。このプロセスでは、仮説の誤りをマイナスに捉えず、新たな課題や問題に気づく機会として扱うことが求められます。 分析のサイクルをどう回す? 分析の基本である「目的・仮説・データ収集・仮説検証」のサイクルを回すことについては、業務で分析を行う際に疎かになっていたと反省しました。数字に集約した分析を学ぶなかで、代表値(単純平均、加重平均、幾何平均、中央値)や散らばり(標準偏差)のそれぞれが適した状況で使い分けることが重要であると再認識しました。 患者数低下の原因とは? 紹介患者数の低下対策を立案する際、まず分析のプロセスをしっかりと踏むことが大切です。特に目的を明確にすることで、求めたい結果を得るためのポイントとなります。次に、どの視点で分析を進めるかを判断し、グラフや数字を用いて実行していきます。 具体的には、紹介患者数低下の分析では、近隣医療機関からの紹介の減少が課題(目的・問い)となります。減少の要因について仮説を立て、その後、取るべき分析の視点(インパクト・ギャップ・トレンド等)を考慮してデータを収集し、グラフ化・数値化します。最後に、分析結果と仮説を検証し、対策を立案します。

データ・アナリティクス入門

データ分析で結果を出すための工夫

データ分析の目的を明確に データ分析を行う際には、以下の点を重視する必要があります。 まず、分析の目的を明確にすることが重要です。分析の本質は比較にあり、適切な比較対象を選ぶことが求められます。そのためには、どのような項目をどのように分析するかという仮説を立て、それに基づいてデータを集め、分析することが必要です。そして、目に見えないデータや事象も考慮しながら、見せ方(例えばグラフなど)にも注意を払います。 マーケティング成果発表の準備は? 分析をする際の初めのステップは、「誰に」「何を」伝えるためにこの分析を行うのかを明確に意識することです。特に、次の期のマーケティング部門の成果発表で伝えるメッセージを考えるには、この意識が不可欠です。 来期施策に活かす分析のポイント 次に、来期の施策の布石となるメッセージを考えます。そのためには、まずどういうメッセージが良いかを考え、会社の方向性を確認します。その方向性とメッセージがつながっているかを検証した上で、どんな項目をどのように分析するのが適切かという仮説を立てます。実際にデータを集めて集計し、仮説の正しさを検証します。 このプロセスを通じて、有効と感じた施策や取り組みを数値的な裏付けをもとに発表し、来期の施策に活かしていくことが重要です。

データ・アナリティクス入門

合宿で描く未来のマーケ戦略

方向性はどう決める? 来年度に向けた部としての1年間の方向性とTODOを検討する合宿で、今回学んだ内容を活かすことができると感じました。合宿では、現状できていることとできていないこと、そして今後必要なソリューションについて話し合いました。具体的には、今後重要になると予想される広告指標について、各ソリューションごとの導入実績を比較し、2024年の傾向を把握することが求められると認識しました。また、現状のホットなマーケティングトピックから、今後伸びるであろうKPIを仮定し、その上でどのようなソリューションを開発すべきかを検討しました。 情報はどう集める? さらに、分析においては、情報やデータの収集方法が非常に重要であると感じました。普段あまり活用していなかった社内のポータルや事例集なども積極的に利用し、必要な情報が何か、足りない情報はないかを意識しながら、学んだプロセスに沿って分析に取り組んでいくつもりです。 分析の進め方は? また、データ分析の基本として、目的を明確にし、仮説思考でアプローチすること、比較を重視すること、そしてwhat→where→why→howというプロセスで考えることの重要性を再確認しました。これらの考え方を実践することで、より具体的な分析結果が得られると実感しています。

データ・アナリティクス入門

問題解決へのMECE活用術

問題点の把握はどう進める? まず、問題点をきちんと把握し、理想の姿と現在の状況との差を捉えることが重要です。そのためには、物事を様々な角度から分析し、分解する必要があります。平均的に一括りで捉えると、真の問題を見逃す恐れがあります。ここで、MECE(Mutually Exclusive, Collectively Exhaustive)の原則を意識すると、要素を漏れなく重複なく分けることができ、問題の明確化から課題設定がしやすくなります。 数字の状況をどう把握する? 数字の状況や問題点を把握する際には、つい平均で語られることが多くなります。しかし、細部までしっかりと捉えた上でサマリーをすることが大切です。そして、いつでも元に戻れるように、プロセスを明確にしてツリー構造として残しておく必要があります。これを怠ると、感覚的な議論と空論の間を行き来することが多く、物事が進まない原因となります。 視点設定と情報分解の秘訣は? 数字や定量的情報で状況を表し、要素分解を行うことが鍵です。この際、視点の設定が非常に大切ですが、解決したい問題、本来の目標、最終目的を意識し、人に聞きながら自分の考えを伝える形で整理していきます。立ち戻る目的を明確にすることで、偏見がかからないように注意することも重要です。

クリティカルシンキング入門

伝わる文章の作り方、一緒に学ぼう

オンライン学習の気づきは? ナノ単科のオンライン学習を通じて、文章や資料作成における基本的なポイントを改めて学びました。文章は、目的と読み手を意識した構成で、情報が論理的かつ理解しやすい順序で提示され、内容が伴うかたちで伝えられていました。 伝わる文章作成の工夫は? 文章を書く際には、定型文に陥ることなく、自分が実際に受け取る側の視点で工夫が凝らされており、無駄な表現を省くことでシンプルかつ具体的な内容にまとめられていました。アイキャッチの効果やフォント、色の使い方にも配慮が感じられ、読む人にとって分かりやすい工夫が随所に散りばめられていました。 資料作成の見せ方は? 一方、資料作成においては、情報がてんこ盛りになりがちな内容の中から、本当に伝えたいポイントを明確にし、必要な内容を効果的なグラフとともに提示することで、視覚的にも理解しやすい資料へと仕上がっていました。グラフの種類やタイトルの付け方、文字の使い方など、細かな点まで気を配られている点が印象的でした。 経験から何を得た? 全体として、今回の学びは、より伝わりやすい文章と資料作成のための貴重な経験となりました。今後もこの経験を踏まえ、受け取り手にとって理解しやすい情報発信を心がけていきたいと感じています。

データ・アナリティクス入門

同条件で実感!比較のヒント

どうして比較するの? 分析の基本は「比較」にあります。しかし、比較を行う際には、正しい対象同士を照らし合わせなければ、正確な結果は得られません。たとえば、単に全体の平均値を比べるのではなく、同じ条件下(Apple to Apple)での比較を意識することが重要です。具体的には、ある施策の効果を評価する場合、対象は施策を受けたグループと、受けていないグループに限定し、その効果が明確に反映されるように設定する必要があります。また、比較を行う際は、外れ値の有無やデータの対象数、そして分析の目的に沿った比較がなされているかどうかにも注意を払うことが求められます。 比較の実践はどう? 現在、売上やマーケティングの集計そのものはしていませんが、常に「比較」を意識しながら、比較対象が正しいかどうかを確認する視点を持つよう心がけています。目的に合った分析であるかを常に考え、比較した結果をどのように的確に示し、他の人にわかりやすく伝えるかという点が大切だと思っています。 結果提示の工夫は? 今週の学習内容については、特に疑問に感じた点はありませんでした。ただし、グラフや推移グラフ以外の方法で、他の人に理解しやすい分析結果の提示方法について、どのような工夫がされているのか知りたいと感じています。

データ・アナリティクス入門

仮説検証で拓く本質への道

本質に迫る秘訣は? これまでは、都合の良い答えに飛びつき、裏付けが偏った分析をしてしまっていたことに気づきました。しかし、問題解決のプロセスに沿って仮説と検証を正しい順序で進め、事実に基づいて判断することで、本質的な課題に早くアプローチできると学びました。 目的の重要性は? また、分析に取り組む前には、まず目的を明確にすることが極めて重要であると実感しました。目的が曖昧だったり、途中で忘れてしまうと、結論を導き出せず成果へとつながりません。定期的に目的を振り返ることで、必要に応じた軌道修正が可能になるという点も大きな収穫でした。 複数視点の意味は? さらに、分析を行う際には、単一の数字や結果だけに頼らないため、比較を行うことの重要性を再認識しました。一つの指標だけでは陥りがちな思い込みを避け、複数の視点から検証することで、説得力のある結論に近づけると感じました。 具体策をどう試す? 具体的な実践としては、月ごとの売上データに実際に触れてみることにしています。これまでは解説付きの資料に頼りがちで、問題点やその対策が本質的に理解できていなかったと感じます。売上の増減に影響を与えている要因を、自部門の活動と照らし合わせながら振り返り、今後の対策へとつなげていこうと思います。

デザイン思考入門

共感で紡ぐ課題解決の瞬間

どうやって本質を見抜く? 業務でデータ活用を推進する中、ユーザーの困りごとをヒアリングする機会がありました。慣れ親しんだ業務に没頭していると、ユーザー自身が困りごとに気づいていない場合があるため、共感をもって話を聞くことで本質的な課題を浮き彫りにすることができました。 なぜ議論は広がる? 共感を通じて相手が話しやすくなると、本来の課題を見出すことができる一方で、深く話を聞けば聞くほどさまざまな課題が表面化し、議論が広がりすぎることもありました。この経験から、目的を常に明確にしながら、ユーザーの「困りごと」を丁寧に整理していくことの重要性を痛感しました。単に話を聞くだけでなく、どこに本当に困っているのかを正しく理解し、課題を構造的にまとめるスキルが求められると感じています。 今後の対策は何? 今後は、共感と整理の両輪を意識し、言葉を丁寧に整えることで、相手の気づきを引き出し、より良い解決につなげたいと思います。 何を学び実践? 今日の学びは、「共感」と「整理」のバランスが重要であるということです。相手の話に耳を傾け信頼関係を築くと同時に、目的を見失わずに情報を整理する視点を持つことで、ユーザーの困りごとを深く理解し、言語化および構造化する力をさらに磨いていきたいと考えています。

データ・アナリティクス入門

目的意識が導く新たな一歩

理解不足は何故? 「どこに問題があるのかを4つの視点で考える方法」について、これまでの学習テーマに比べしっくりこなかった部分もあり、自分の理解力不足を痛感しました。また、マーケティングの学習中に出てくる専門用語が多く登場したため、改めて具体的な事例に照らし合わせながら学ぶ必要性を感じました。 A/Bテストは何が肝心? CRMのメール発信を担当している経験から、これまでA/Bテストに取り組んできたものの、手法そのものを知っている・実施したというだけではなく、テストを行う前の目的を明確にし、AとBそれぞれの「誰が、何を、なぜ」という点をしっかり考慮しないと効果が半減してしまうと実感しました。 全体目的は明確? プロモーションなどの一部の発信手法に留まらず、事業全体の目的を明文化し、グループ内で共有することの重要性を改めて感じました。分析、課題、仮説といった学習内容からは一歩離れるものの、問題の原因や仮説を検討する前に、まず全体の目的や前提となる問題があることに気づかされました。 目的は全員一致? また、各自が担当プロジェクトの目的を意識する体制において、それぞれの目的が本当に矛盾なく共有されているのか、今更ながら疑問を感じるとともに、再確認する必要性を強く認識しました。

データ・アナリティクス入門

仮説と現場で読み解く数字の物語

現場で何が起きる? 平均値などの代表値を把握するだけではなく、現場で実際に何が起きているかを想像しながらデータに向き合うことが大切です。そのため、自分自身で仮説を立て、仮説検証型で分析を進めることが求められます。分析の目的に応じて比較する対象も変わるため、たとえば「夏の気温は本当に上昇しているのか」という問いに対して、単純に1年前のデータや他の地点のデータと比較するだけでは、十分な答えは得られにくいでしょう。 ビジュアルで何が分かる? また、代表値の理解をより精緻なものにするために、データのビジュアル化を試みることが重要です。第三者に伝えるときだけでなく、自分自身で数値を分析する際にも、数字だけでは見逃しがちな現場の情報に焦点を当てるため、ビジュアル化の活用を心がけましょう。 AI活用はどう役立つ? さらに、医療施設ごとの売上や従業員ごとの活動履歴など、大量かつ複雑なデータに関しては、定型的な加工に陥りやすい傾向があります。まずはデータの分布を把握するためのビジュアル化を行い、分析の目的に合ったデータの特徴を考察する時間を確保することが推奨されます。このプロセスにはAIの活用が有効であるため、迅速に作業に取り掛かれるよう、使用するプロンプトをあらかじめ保存しておくと便利です。

「本 × 目的」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right