データ・アナリティクス入門

視点が変わるデータ再発見のヒント

代表値は何を示す? データ分析においては、代表値や標準偏差といった基本指標を正しく理解し活用することが大変重要です。代表値には単純平均、加重平均、幾何平均、中央値などがあり、分析の目的に合わせた使い分けによって、より正確に傾向を読み取ることが可能となります。なお、実際の業務では最頻値を確認する場面もあるため、必要に応じて取り入れることが望ましいです。 集約手法の選び方は? また、データの集約方法にはさまざまな手法が存在し、誤った方法を用いると解釈や意思決定にズレが生じる可能性があります。そのため、常に目的に合ったアプローチを意識し、適切な手法を選択することが重要です。さらに、データのビジュアル化では、表現方法を工夫することで数字だけでは気づきにくい傾向を視覚的に捉えることができるため、状況に応じた最適な手法の選択が求められます。 ダッシュボードはどう使う? 施策の効果検証や日々の数値を確認するためのダッシュボードの作成・管理は、私の業務において大変重要な役割を担っています。これまでも代表値の使い分けやデータのビジュアル化について意識してきましたが、今回の学習を通じて基礎部分を再確認することができ、より適切な方法を用いる必要性を実感しました。特に、ダッシュボードは自分だけでなくチームのメンバーも活用するため、見せ方や解釈しやすさに細心の注意を払っています。 新たな平均法は? これまであまり使用してこなかった加重平均や幾何平均についても、現在扱っているデータに適用できる場面を意識的に探していきたいと考えています。既存のデータを例に、新たな視点での分析に取り組むことで、今まで見逃していた傾向やパターンを見出せる可能性があるため、さまざまな集約方法を試し、状況に合わせた最適な手法を選択できるよう努力したいと思います。 グラフ表現の意味は? ビジュアル化に関しては、単にグラフを選ぶのではなく、なぜその形式が適切なのかという明確な意図を持って活用することが大切です。さらに、同じ種類のグラフであっても、表示する項目数や内容によって可読性や伝達力が大きく変化するため、見せ方の工夫や調整にも十分な注意を払っています。

リーダーシップ・キャリアビジョン入門

実践で築く柔軟リーダーの極意

部下指導の基本は? 組織や部下を動かす基本的な流れは、まず方針を明確に説明し、次に仕事を割り振り、フィードバックを与え、やる気を引き出したうえで次の仕事を付与するというものです。 リーダーの役割は? リーダーシップは、変革を推し進めるために重要な役割を果たします。マネジメントとは異なり、長期的なビジョンを提示しながらメンバーを統合し、動機付けを行います。その考え方は、歴史とともに特性理論、行動理論、条件適合理論と進化しており、最近では状況に応じた柔軟な対応が求められる条件適合理論が主流となっています。 行動分類はどう? リーダーの行動タイプは、指示型、支援型、参加型、達成志向型の4つに分けられます。指示型は、曖昧なゴールやコンフリクトを抱えるチーム、あるいは部下の自立性や経験値が低い状況で明確な指示を出す方法です。支援型は、部下の状態を見極めながら必要なサポートを提供するやり方で、権限の差がはっきりしている場合にも有効です。参加型は、部下の意見を取り入れて意思決定を行う手法で、自己解決力のある部下に適しています。達成志向型は、困難な状況や曖昧なゴール設定であっても、部下自身に高い努力と成果を求め、期待感を喚起する方法です。これらの行動は、仕事の性質(環境要因)や部下の特性(適合要因)を十分に考慮して選択されるべきです。 適合判断はどう? 私は、これまでの学びを通して一定の知識は得たと感じているものの、特に部下の適合要因を正確に見極める点に課題があると感じています。そのため、人間への関心と業績への関心という2軸でリーダー行動を整理する方法にも注目しています。 業務変革はどう? DX推進のリーダーとして、業務変革が最重要課題となる中、多くのメンバーが未経験の業務に挑戦しています。組織変革の経験があるメンバーと、オペレーション中心で活動してきたメンバーが混在するため、仕事を付与する際には、各メンバーのサインを注意深く観察し、進行中の状況に合わせて自分のリーダー行動のタイプを見極める必要があります。そして、状況に応じた臨機応変な行動の変更を実践し、より効果的なリーダーシップを発揮していきたいと考えています。

データ・アナリティクス入門

理想と現実を繋ぐ数値の声

あるべき姿って何? 今までは「あるべき姿」を、漠然と「ありたい姿」と「正しい状態」の二つの意味で使い分けずに運用していたことに気づきました。しかし、その区別を認識したことが今後の分析にどのような影響を与えるのか、正直なところ分かりません。今後その機会が訪れるのか疑問に感じています。 また、あるべき姿として何を設定するかを考えた時、以前はただ漠然と「こうなればいいな」と思う程度で、例えば急降下するグラフの曲線が鈍化すればよいという認識に留まっていました。今後は、より定量的に表現できる方法を検討していきたいと考えています。 早帰りは何故? 人の管理において、業務終了時間が18時であるところ、早帰りが認められている場合、退社が17時になると、早帰りする人は17時前に業務終了の準備に取り掛かり、17時ちょうどに退出するケースも出てきます。そのため、17時前のお客様からの問い合わせに十分に対応できず、お待たせしてしまう場面があるのです。 解決へ向かう道は? この課題を関係者間で合意のもと解決するためには、現状として17時前に何人が業務を離れているのか、またその時間帯にどの程度の問い合わせが発生しているのか、そしてその問い合わせにどの程度対応できれば問題ないのかといった、正しい状態を定量的に示す必要があります。これを踏まえ、現状を関係者間で共有し、合意形成を行った上で、解決手段を検討していきたいと思います。 まずは現状分析として、以下の点を把握する必要があります。 ① 17時前の人数 ② 17時後の人数 ③ ①と②の差から算出される早帰り人数(すなわち、17時前における作業可能人数の減少) これらのデータや、該当する時間帯の問い合わせ件数を数週間にわたり収集し、現状を明確にします。その上で、現状と理想の正しい状態が何かを議論し、あるべき姿を決定します。そして初めて、どのように問題を解決するか(how)の議論に入ることができると考えています。 これまでは、関係者間で現状のすり合わせを十分に行わずに解決策(how)のみを議論していた点を反省し、今後は一歩ずつ着実にステップを踏んで進めていきたいと思います。

データ・アナリティクス入門

データで掴む!即効性のある仮説検証術

仮説の設定と共有はどうする? 「仮設の設定」 何が(what)、どこで(where)問題が発生しているのかという視点で考えることが求められます。その際、3Cや4Pのフレームワークを用いることで、網羅性を確保できます。自分自身の仮説を持つことも重要ですが、独りよがりにならないように、複数人で仮説を出し合うことが大切です。さまざまな視点で仮説を考えることで、より豊富な仮説を出すことができます。そして、その仮説がなぜ(Why)起こっているのかを考え、解決策(How)を導き出します。 仮説の検証はどのように行う? 「仮説の検証」 解決策(How)として妥当かどうかを検証する際には、立証したい仮説に偏ったデータ収集は避けます。他の仮説を立証するようなデータも含めて、客観的にデータを比較することが重要です。これにより、仮説の説得力が強まり、仮説から導き出される結論(意思決定)の実効性も高まります。どんな単位を使ってデータを比較するのかや、主張したい仮説をいかに端的に説明できるかを慎重に考える必要があります。 データ分析で何を重視する? 「仮説の共有」 特に組織においては、「問題解決の仮説」から導き出される「結論の仮説」を実行する際に、コミュニケーションの課題が発生します。自身の仮説を客観的に立証した上で、共有するための仮説を立てる必要があります。 自身の仕事の一つの課題として、ドライバーの待機時間の削減が挙げられます。得られたデータから平均値を算出し、標準偏差も計算します。そして、組織として持つべきKPI値(平均値・標準偏差)と比較します。そのうえで、KPI値未達の箇所(Where)に注目し、なぜ(Why)未達なのかを関係部門と数値を見ながら考えます。その後、仮説の設定(問題解決方法 How)を行います。 まずは、得られたデータから平均値と標準偏差を算出します。次に、得られた平均値が妥当なのかを標準偏差から検討します。標準偏差を悪化させている要因(外れ値)に注目し(Where)、なぜ外れ値が発生しているのかをプロジェクトメンバーと意見を交わして(Why)、直近で必要な対策(How)を考えます。

データ・アナリティクス入門

ロジカルなアプローチで課題を解決する秘訣

分解手法の課題とは? ロジックツリーについては知識があったが、「層別分解」や「変数分解」については理解が浅かった。このため、分解の方法に甘さがあったことに気づいた。MECE(漏れなくダブりなく)の原則に基づいて物事を分解しようとしていたが、ただ「その他」という項目を入れないようにしよう、「漏れなくダブりなくしよう」とするに留まり、実際には分析の観点で意味のある分解ができていなかった。「切り分けて意味のある分け方」ができていなかったのだ。 SFAでの運用改善策とは? マーケティングにおけるリードから商談に至るまでの顧客属性や営業活動履歴について分解し、SFA(営業支援ツール)上で選択肢を設定している。しかし、これがMECEであったとしても、分析の観点で後々良い結果に繋がらない選択肢を設定してしまっていたと気づかされた。ルールとして運用に乗せているため現場には混乱が生じがちだが、説明を通して理解を得て改善していきたい。 問題解決に向けたステップ SFAでの選択肢に関して直近の課題については、以下のステップをとる予定だ。 1. 最適なSFAでの活動結果の選択肢を調整するため、これまでに蓄積された様々な結果を分解手法を用いて再分解する。 2. 修正点についてチームメンバーと意見交換を重ね、最終的な決定を行う。 3. 現場の運用に支障が出ないよう、営業メンバーに理由を含めて通達し、理解を得る。 冷静な問題解決が大切 また、今後自分が行う企画については、「問題解決のために必要なステップ」である「what(何が問題か)」「where(どこに問題があるか)」「why(なぜ問題が起きているか)」「how(どうすればよいのか)」をきちんと踏まえ、目の前に見えて重要そうな課題や感情論に走らず、冷静かつ客観的に根拠のある分析を進めていきたい。企画時点での分析をきちんと行い、その結果をまた分析することでPDCAサイクルを回すことを徹底したい。 説得力を高めるには? 他メンバーに対して意見を出す際にも、上記の問題解決のステップを踏まえた説得力のある意見を出せるよう努め、納得を得られる形にしたい。

マーケティング入門

顧客目線でマーケティング戦略を見直す方法

顧客目線をどう捉えるか? マーケティングの基礎として、顧客目線で考えることが前提です。その上で、イノベーションの普及条件(5つの条件)と照らし合わせることにより、市場の立ち位置や比較がより明確になります。 行動変数で顧客を理解? 顧客のセグメンテーションを検討する際には、デモグラフィックだけでなく、趣味や思考、価値観などの行動変数も考慮すると、顧客像を多角的に把握できます。これにより、市場のトレンドを捉えることが可能となります。 さらに、成長性を評価する6Rなどのスクリーニングを行うと、ターゲティングが現実的になり、場合によってはターゲティングの変更も視野に入れることができます。 ネーミングで価値をどう伝える? ネーミングをする際も、顧客が抱く「負のイメージ」を想定し、それを解消することが重要です。これにより、顧客が求める価値を理解し、自社製品の価値を効果的に伝えることができます。 ただし、競合と比較して製品開発やプロモーションに集中しすぎると、「差別化の罠」に陥ることがあります。本来提供すべき価値を見失い、競合との差別点ばかりに焦点を当てる危険性があります。マーケッターとしては、この点にも注意が必要です。 結果として学んだことは、顧客が常に起点であることを理解し、様々な関係性をフレームとして当てはめることです。 SNS戦略で何を重視する? 自社のECサイトやSNSでの戦略構築においても同様で、顧客目線の整理、行動変数による理解、そして6Rを鑑みた顧客理解が必要です。主観に頼らず、顧客が何を求めているのかを理解し、コミュニケーションを図る戦略立案が求められます。主観でSNSの発信内容を決定するのではなく、顧客との接点を心理的変数で設定することを実行したいと思います。 コーポレートSNSでは次のステップが必要です: 1. フォロワーのサイコグラフィック変数を導き出す。 2. 顧客理解を基に、6Rスクリーンニングの仮説でターゲット理解と機会を洗い出す。 3. 競合とのポジショニングを考慮し、実行すべき戦術を決定する。 4. その測定を繰り返すフレームワークの作成を実践する。

データ・アナリティクス入門

仮説思考で成果を引き出す方法を学んで

仮説思考をどう浸透させる? 今回の学びで、仮説とは何か、その明確な答えと種類について理解を深めることができました。これにより、今後同僚に仮説思考を浸透させる際に非常に役立つ知見を得られました。 データ収集の重要性とは? 特に印象に残ったのは、仮説を検証する際には都合の良いデータだけでなく、そうでないデータも集めることの重要性です。これは当たり前のことですが、自分の仮説を成立させるために都合の良いデータを集めがちであることに気づかされました。また、仮説を用いて社内外のステークホルダーを説得するには、多くの状況証拠を集めて分析することの重要性を再認識しました。 行動を深める仮説活用法 私は仮説をもって行動することの重要性を感じています。失敗しても「なぜ失敗したのか」を検証しやすくなるためです。今週の学習では、仮説を正しく用いることで説得力が増し、行動のスピードと精度も上がるという点に感銘を受けました。この学びを次週以降の学習でさらに深めたいと思っています。 成功体験に頼らないためには? 仮説の重要性やその価値を同僚に伝え、仮説思考を普及させることで、事業部の政策決定や担当者の行動が効率化されることを期待しています。過去の成功体験に依存する傾向がある事業部では、なぜ成功したのか、そして今も通用するのかを検証せずに同じ施策を繰り返しがちです。これは「問題解決の仮説」ができていない証と考えます。仮説思考の重要性を学んだので、これまでの取り組みを再考したいと思っています。 キャンペーン効果の再評価を 具体的には、事業部が定期的に行うキャンペーンやインセンティブについて、その効果を費用面だけでなく当時の外部環境も踏まえて検証しようと思います。これまでは、仲の良い同僚や上司と問題提起を行い理解を得られていましたが、それを全体に普及させることはできていませんでした。次週以降の具体的な方法を適用するための準備として、多様なデータを集めることから始めようと思います。その際、都合の悪いデータも取得することを忘れずに行いたいです。この週の気づきを早速実務に反映していきたいと思います。

戦略思考入門

選択と集中で未来を切り拓く方法

定量だけで良いの? 企業で働く私たちにとって、企業方針に沿った売上と利益の追求がビジネスの本質だと考えています。しかし、定量的な側面だけで意思決定を行うのは不十分で、多面的な視点から評価し、定量情報と定性情報を組み合わせることで、最適な意思決定を行う必要があります。その判断が正しかったかは実行後の結果からわかるため、短期間での振り返りと必要に応じた修正が重要です。 何を優先すべき? 「取捨選択」や「選択と集中」を常に意識していますが、改めて重要なのは、何を優先すべきかに注力することです。時にはビジネスの慣習に囚われず、思い切って無駄を省くことの重要性を再確認しました。期の節目には活動を振り返り、評価が厳しいものについては、その継続や中止をプロとコンスで整理してみることも良い方法だと思います。 具体的な施策は? 最近の具体的な捨てる施策としては、2024年10月から一時的に自社製品単体でのウェビナー開催を中止しました。顧客獲得が鈍化し、稼働対効果や費用対効果が合わず、メンバーのモチベーションも低下したためです。代わりに、複数の製品を組み合わせたセミナーイベントを企画し、顧客にとって魅力的で価値あるコンテンツを提供していきます。 新たな接点を見つける? また、リアルセミナーでは、顧客と営業担当との新たな接点を作る目的を設定し、単なる顧客獲得にとどまらないゴールを目指しています。PDCAサイクルを回しながら、必要ないものを捨て、継続すべきものや改善が必要なものを見極めて取り組みます。 今後の計画は? 年末を迎えるにあたり、チームメンバーには現在の業務を見直させ、過去の延長にある業務を棚卸しするよう指示し、2025年度からは取捨選択した新たな活動に取り組む予定です。2025年1月から実施する新たな代替策の成果を、稼働対効果や費用対効果、顧客獲得や売上の視点から評価し、それを2025年4月からの新しい活動方針に活かしていきます。そのため、管理者と中期的視点で戦略を練り、ゴールを設定し、2025年3月までにチーム全体に浸透させる計画を進めています。

クリティカルシンキング入門

思考の偏りを越える新たな視点の旅

クリティカル・シンキングとは? クリティカル・シンキングを効果的に身につけるには、まず自分や他人の思考に潜む「偏り」や「制約」を意識することが重要です。クリティカルに考えるというのは、自分の思考の偏りや制約を認識し、それを乗り越えるための「もう一人の自分」を育てることとも言えます。その際、「視点を変える」「視座を上げる」「視野を広げる」という三つの視が思考の制約を取り除き、思考を広げる助けになります。 思考を広げるには? また、思考の偏りを防ぐためには、ロジックツリーのようなツールを活用し物事を「分解」することが求められます。客観的で論理的な思考力は、「頭の使い方を理解する」「他者とディスカッションを重ねる」「反復トレーニングを行う」といったプロセスを通じて強化されていきます。クリティカル・シンキングとは「適切な方法で、適切なレベルまで考えること」であり、常に目的を意識して自他の思考の癖を前提に、本当にその答えで良いかを問い続ける姿勢が求められます。 教師としての挑戦は? 私の取り組みとしては、会議でのファシリテーションを通じて納得感のある意思決定を導いたり、部下のコーチングを通じて考えを広げ深めてもらうことも考えています。また、生徒をより良く理解し、成長に導く教師としての生徒指導や、目的に対してより効果的なカリキュラムを策定することも重要です。保護者対応においても、保護者の思いを正しく理解し、共に納得のいく解決策を考えるよう心掛けています。また、授業計画や学校行事計画と実施においては、生徒育成目標に照らして改善を検討しています。 スキルを磨くためのステップは? さらに、ロジックツリーを用いて論点を可視化し、検討しやすい形にしてディスカッションすることも取り入れています。いきなりクリティカルには考えられないので、できる限り他者とのディスカッションを行い、反復トレーニングを積み重ね、少しずつ成長していくことを目指しています。その過程で、積極的に失敗し、知識ではなく「スキル」として無意識にクリティカル・シンキングをできるレベルに達したいと思っています。

データ・アナリティクス入門

現場の知恵で磨く課題設定術

課題設定はどう考える? 今週は、データ分析の一連の流れ(問題提起、仮説設定、検証方法の決定)の総復習を行いました。特に、どんな課題を設定すべきかという初期段階での苦労から、課題設定の難しさを実感しました。適切な課題設定がなされなければ、仮説や検証の方向性も定まらず、最終的な分析の質に大きく影響することを再認識しました。また、課題設定の精度を向上させるためには、現場の声をヒアリングする、過去のデータからヒントを得る、フレームワークを活用するなどの工夫が必要だと感じました。 実務復習は何が目的? 今回の復習を通して、実務でデータ分析の流れを実践し、ブラッシュアップしていく重要性も改めて感じました。特に、業務改善や営業データの分析においては、適切な課題の切り口が成果に直結します。例えば、営業成績が伸び悩む店舗に対して「なぜ成果が出ていないのか?」と問いかける際には、「訪問件数が少ないのか」、「折衝時間が短いのか」、「既存顧客へのアプローチが不足しているのか」といった具体的な観点から検討する必要があります。適切な課題が設定されなければ、的外れな仮説から誤った改善策を提案するリスクもあるため、今後は現場の意見をしっかりとヒアリングし、過去のデータを積極的に活用する習慣をつけたいと考えています。 仮説検証はどうなす? さらに、仮説を立てた後は、実践を通じてどのようなデータが有効なのかを検証することで、より精度の高い分析フローを確立することが求められます。これによって、業務改善や営業データの可視化に対して、より効果的なアプローチが可能になると実感しました。 現場実態はどう見る? 現場の実態を正確に把握するためには、まず営業担当者の意見を聞き、「営業活動でどのような課題を感じているか」を確認することが重要です。データだけでは見えにくい実際の状況を把握するため、過去の営業データ(営業成績の推移、訪問件数、成約率など)を分析し、他店舗との比較からどの指標に差があるのかを特定します。また、フレームワークを活用して「なぜ?」を繰り返し問いかけ、根本的な課題を探ることも効果的です。

クリティカルシンキング入門

本質を捉える思考のトレーニング

なぜクリティカル思考? コースを通じて、クリティカル・シンキングは知識を実務に活かすための基礎体力であり、自身の思考を意識的にチェックするもう一人の自分を育てるプロセスであると理解できました。以下、その学びを整理して記します。 情報はどう見抜く? まず、思考の基礎についてです。大きな学びは、情報に対する客観性を獲得できたことです。日常生活において、ニュースのグラフや主張をそのまま受け止めるのではなく、必ず検証する習慣がついてきました。また、複雑な意思決定の場面では、複数の視点や構造的思考を活用し、感情や直感に左右されない判断軸を確立できるようになりました。 問題の本質は何? 次に、問題解決のプロセスに関して学びました。施策検討に入る前に、まず解くべき本質的な問い(イシュー)を見極め、全体像をMECEに分解することで問題の所在を明確にする方法を習得しました。さらに、具体と抽象の対話を通じて発想を広げるプロセスも身につけることができました。 伝え方には工夫が? また、相手に伝える際の工夫として、解釈のずれを防ぐためにビッグワードの使用を避け、結論を先に述べる順序を意識するようになりました。データ分析においても、解像度を上げつつ、どのようにデータを分解するかを考えることで、イシューがより明確になるよう努めています。 提案はどう作る? 私は、損害保険の営業部門に所属し、上場企業の金融機関、M&A仲介企業、ベンチャー企業を担当しています。お客さまへの提案の際には、まず相手のイシューを捉えることが重要だと考えています。自分が何を提案したいかではなく、お客さまの抱える課題とその解決策を重視し、具体的なイシューを設定してカバーの方向性を決定しています。提案書作成時には、主張を根拠で支えるピラミッド構造を意識し、抽象的な表現を避け、具体的な財務損失の数値やカバー範囲を提示することで説得力を高めています。 努力はどこへ向かう? このようなプロセスを日々意識し、実践力の強化に努めるとともに、反復トレーニングや他者とのディスカッションを継続しています。

クリティカルシンキング入門

MECEで問題をスッキリ解決する方法

物事を分解する学びの重要性とは? 物事を分解する方法について学んだことが非常に有益でした。まず、全体像を明確に定義し、目的に沿って切り口を設定し、MECE(漏れなく・ダブりなく)の原則を用いて事象を分解します。これには、「層別分解」、「変数分解」、「プロセス分解」の3つのパターンがあります。 分解手法の具体例をどう活用する? 層別分解では、「年齢別」、「性別」、「季節別」といったように、特定のカテゴリーごとに事象を分けます。変数分解では、「売上=客単価×客数」のように、事象を構成する要素に分解します。プロセス分解では、ある事象のプロセスを詳細に書き出し、そのどこに問題があるのかを分析します。 MECEが導く次の一手は? 分解する際には、異なる視点が混在しないよう注意し、まずは試みてみることが重要です。たとえ分解した結果、特筆すべき点が見つからなかったとしても、それは「ここには差がなかった」という価値があり、他の観点での分解につなげることができます。失敗と捉えず、次の行動に繋げることが大事です。 これを売上分析に応用すると、例えば「年齢別」、「性別」、「季節別」に層別分解したり、「売上=客単価×客数」という変数分解を用いたり、プロセスの中の問題点を探るプロセス分解が有効です。 DX人材育成にMECEはどう役立つ? また、DX人材育成に関する施策を進める際の根拠としても使えます。例えば、社員のデータ活用率を上げることを目的に、現状を把握し、MECEを活用して問題点を明確にすることで対策を立てることができます。 意思決定の効果をどう高める? 意思決定時には、情報をMECEで分類し、優先順位を決める手法が活用できます。これにより、どの情報を基に判断すべきかが明確になります。また、プロジェクト進行中に意見が割れた際には、目的を再定義し、網羅的に議論ができているか確認することで、考慮漏れがないかをチェックすることができます。 このように、MECEの原則を用いることで、さまざまな問題や課題を効果的に分解し、具体的な対策や判断を導き出すことができます。
AIコーチング導線バナー

「決定 × 方法」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right