アカウンティング入門

B/Sで読み解く経営の未来

B/Sで会社の健康状態は? B/Sのみでも会社の健康状態の概要を理解できると実感しました。さらに、以前学んだP/Sと組み合わせることで、たった2つの表からより踏み込んだ企業の状態を読み解けることが分かりました。特にB/Sは経営者の方針が色濃く現れるため、ビジネスの展開方法についても理解を深める手段となります。 決算資料で全体像を把握? 自社の決算発表資料を通して全体の方向性を把握し、その動向に合わせて自部門で変化を先取りすることで、よりプロアクティブな意思決定と行動を促すことができると考えています。実際に、社内のFinance部門が実施する勉強会もおり、次回の機会には参加して知識をさらに深めたいと思います。 ライブ配信で動きを確認? また、自社の4半期ごとの決算発表会はウェブでライブ配信されており、US時間で行われるため、次回はぜひ参加して会社の動向をリアルタイムで確認したいと考えています。

データ・アナリティクス入門

目的と仮説で磨く分析の力

分析ってどう理解? 分析とは、ものごとを分け、比べることだと改めて理解しました。具体的かつ明確に整理することで、より良い意思決定に役立てる手法であるという基本的な定義を再確認できたと感じています。分析を進める上では、目的設定と仮説設定がいかに重要かという点が特に印象に残りました。 目的設定は何が必要? まずは、分析の目的を明確にして、どの意思決定に結びつけたいのかを整理することが大切だと考えています。その上で、目的に合わせた仮説を立て、膨大なデータの中から役立つ情報を見極める方法を実践していきたいと思います。 振り返りの進め方は? また、自身の業務を振り返り、データを活用して改善したい点を整理し、どのようなデータを収集しているのかを把握することから取り組みたいと考えています。一つのテーマに絞り、目的設定、仮説設定、そして分析の順で自分なりに実践を進めることで、より良い結果を得たいと思います。

データ・アナリティクス入門

数字で読み解く採用の秘密

データ比較の留意点は? データの比較アプローチには、大きく分けて2つの方法がある。1つは、1つの数字に集約して評価する方法、もう1つはデータをグラフ化して視覚的に捉える方法である。 数字集約の意義は? 数字に集約する方法に関しては、加重平均、幾何平均、標準偏差といった手法があり、今回初めて耳にしたため、新たな数値の捉え方を学べたのが印象的だった。 採用分布は何が見える? また、採用が決定した方と不採用となった方の現年収およびオファー年収の分布を可視化することで、採用決定や辞退に関する傾向が明確になる可能性を感じた。 今後のヒアリングはどう? 今後の選考では、現年収、希望年収、最低希望年収についてヒアリングを実施し、データを着実に蓄積していく。また、他社で採用が決定しながら辞退に至った方からも決定年収についてヒアリングを行い、自社のオファー年収との比較ができるように進めていきたい。

データ・アナリティクス入門

公平な比較で見つける最適解

打ち手はどう選ぶ? 今週は、課題解決のプロセスにおける打ち手、つまりどう取り組むかという部分に焦点を当てました。その中で、2つの案を比較して検証する手法としてA/Bテストについて学んだのが印象に残りました。A/Bテストは、対象となる条件をそろえることで公平に比較できるため、効果的な意思決定に役立つ方法です。 調査パターンはどう確かめる? 実際の業務ではネット販売が少ないため、A/Bテストそのものは行っていませんが、製品の発売前には複数のパターンを設定して比較検討する調査を実施しています。たとえば、味のバリエーションや商品名・コンセプトなど、さまざまな要素について、それぞれのパターンを複数同時に調査することで、目的にかなった最適な方向性を見極めています。今回の学びを通じて、調査目的を明確にする重要性を改めて認識し、今後は目的に沿ったパターン設定をより一層意識して取り組んでいきたいと考えています。

クリティカルシンキング入門

課題を見える化!効果的な細分化の技術

解くべき問いを見つけるには? テーマが決定すればそれが解くべき課題だと考えていましたが、実際にはそのテーマを細分化し、本当に解くべき問いを見つけ出すことが重要だと気付きました。細分化する際には、解決したい姿や仮説を立て、それをもとに細分化していくと効果的だとも感じました。 理想の姿をどう描く? プロジェクトで計画を立てる際には、ただタスクを洗い出すのではなく、理想の姿を思い浮かべ、それを実現するための実現要件を意識しながら分解していきたいと思います。これにより、一つ一つのタスクの実行結果が仮説検証のためのインプットとなり、より早く正確に目標を達成できると感じます。 実現要件の整備方法は? まずは考えるテーマを決定し、その後、実現方法を考えるのではなく、実現要件を考え、それぞれの要件に対して現状を整理します。そして、解消すべき課題の特定とその解決策を考えることを習慣化したいと思います。

データ・アナリティクス入門

ステップで変わる!問題解決力の磨き方

ステップを踏んで考える重要性 分析する際には、大きな点だけに焦点を当てず、ステップを踏んで考えることが重要です。ロジックツリーを活用することで、大きな問題を細分化して俯瞰できます。この手法により、自分だけでなく他の人も問題点を理解しやすくなり、様々な角度から物事を捉えられるようになるでしょう。 「なぜ」にとらわれない方法とは? 「なぜ」に注目しがちですが、大きな問題を細分化して捉えることで、複数の解決策を見つけることが可能です。ビッグデータの中から、どの数字を分析対象にするかを目的から逆算して決定することが必要です。 ビッグデータ分析の始め方 まずは、ビッグデータを理解しましょう。そこから目的を定め、分析すべき数字を選びます。ロジックツリーを利用して異なる方向からのアプローチも試みると、違う視点から全体を見渡し、新たな発見が得られるかもしれません。

マーケティング入門

実践から学ぶ!顧客志向の革新

顧客理解はどう進む? 顧客志向の重要性を改めて認識する機会となりました。利用者と意思決定者が異なる場合でも、実際に購入するお客様の意図を正しく理解することが、効果的なマーケティング戦略の構築に不可欠だと感じました。 価値は何で感じる? また、顧客が感じる価値には、機能的価値、情緒的価値、体験価値の三つがあると学びました。これらの観点は、サービスや製品の提供方法を見直す上で、多角的なアプローチの必要性を示しています。 自社価値はどう映る? さらに、自社が提供しているサービスや従業員向けマニュアルがどのような価値を生み出しているのかを再確認すること、そしてSNSなどを通じて自社の取り組みが世間でどのように受け止められているかをリサーチすることにより、自社が今後提供したい価値について深く考える大切な時間となりました。

データ・アナリティクス入門

視点を広げる根拠の解決術

原因考察と仮説検討は? 原因を考える際、問題発生までのプロセスを洗い出し、対概念などのフレームワークを用いることで、仮説検討の視点を漏れなく広げられると感じました。また、判断基準を設けた上で重み付けを行ったり、A/Bテストを実施して検証する方法も学び、具体的な打ち手の決定に役立つと感じました。 解決アプローチはどう? 業務におけるこれまでの問題解決のアプローチは、決め打ちに偏りがあり、問題点の洗い出しの視点が狭かったことや、なぜその結論に達したのかの言語化が不足していたと痛感しました。今後は、what→where→why→howのステップに沿って原因の観点を広く整理し、データを比較しながら根拠を持って仮説を立てたいと考えています。さらに、打ち手の決定に際しては、A/Bテストをうまく活用することを試みたいと思います。

データ・アナリティクス入門

固定観念を打破する新視点

固定観念はどう対処すべき? 今週の講義では、マーケティング分野に関して既に知っている内容も多く取り上げられましたが、知識があるがゆえに陥りがちな固定観念に注意する必要があると感じました。これまでの経験から「おそらくこれが原因」と考えてしまう傾向がありましたが、フレームワークを活用し、自分が持っていない視点から再確認することの重要性を再認識しました。 多角的判断はどう進める? また、マーケティング施策の検討時には、自社や自分自身の状況だけに注目しがちですが、競合や市場といった複数の観点から総合的な判断を行うことが大切だと実感しました。さらに、複数の選択肢の中から意思決定をする場合、判断基準を点数化し合計点で評価する方法が合理的であるとの知見も得たため、今後の実践で積極的に活用していきたいと考えています。

データ・アナリティクス入門

数字が語る成長ストーリー

どの指標で問題解決? 顧客の行動をクリック率やコンバージョン率などの定量的指標で捉えることで、どのステップに主な問題があるかを把握できる点が非常に参考になりました。このアプローチにより、各プロセスのボトルネックを明確にし、改善点を正確に捉えることが可能となります。 点数化と離脱はどう? また、各項目を点数化して意思決定を行う方法は大変勉強になりました。各指標にはそれぞれ長所と短所があるものの、複合的に判断することで、優先事項の認識を合わせ、定量的な基準を共有できると感じました。さらに、顧客がどのステップで離脱しているのかをファネルの視点から整理する手法は、成果に結び付けるための具体的なアクションプランを立てる上で非常に有用であり、今後の分析や社内での課題解決の手法として周知したいと考えています。

データ・アナリティクス入門

データが語る平均の真実

平均計算のアプローチは? 平均の取り方やデータのばらつきを様々な方法で検証することで、より正確な分析が可能になると実感しました。ビジネスにおいて平均値が用いられる場合も、その計算方法や元となるデータの内容をしっかり確認する必要があると考えています。 データ集計の工夫は? また、ERP導入時に用いられるデータ集計機能について、顧客と集計方法を決定する際に今回学んだ考え方が非常に参考になると思いました。さらに、見積提示の際に平均工数を算出する必要がある場合、要件によって結果にばらつきが出るため、算出方法を工夫しながら検討する必要があると感じています。

「決定 × 方法」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right