デザイン思考入門

実務に効く!学びの発見術

経営戦略って何かな? 今回の講義では、普段気付かなかった経営の視点や戦略の考え方を学ぶことができ、とても充実した時間を過ごすことができました。講義内容が実践的で、自分自身の業務や考え方にすぐに取り入れられる点が特に印象的でした。 教材はどのように活かす? また、受講中に提供される資料や課題を通じて、問題解決のプロセスを具体的かつ体系的に理解することができました。講師の話し方や解説も分かりやすく、内容が自然に頭に入ってくる工夫が随所に感じられました。 学びはキャリアにどう? 個々の事例や演習を通じて、自らの業務への応用可能性を実感できたことは、今後のキャリア形成に大いに役立つと確信しています。今後もこうした学びの場を通じて、自己成長を続けていきたいと感じました。

データ・アナリティクス入門

焦らずじっくり、物語で解決

どの結果を目指す? 分析に取り組む際、すぐに手をつけがちですが、まずは結果をイメージし、どのようなストーリーで進めるかを考えることが非常に大切だと感じています。What、Where、Why、Howの各視点を意識することで、問題解決へのアプローチが明確になると思います。 焦らず目的は何? また、分析業務の増加に伴い、結果を急ぐあまり焦ることがありました。しかし、焦るのではなく、目的を明確にし、ストーリー構築に十分な時間をかけるべきだという考えに至りました。これまでは十分な計画を立てずに作業を進めた結果、自分の苦手な部分が露呈していたと実感しています。 広い視野で挑む? 今後は、課題解決に向けた仮説の設定やストーリーの構築を、より広い視野で取り組んでいきたいと考えています。

クリティカルシンキング入門

広い視野とクリティカル・シンキングで問題解決に挑む方法

マーケティングで必要なスキルは? マーケティングにおいて、広い視点・視野・視座で物事を判断するスキルは必須能力だと感じています。特に、マーケティングの根幹であるインサイト理解や顧客ニーズの把握には、論理的思考を用いることでより具体的な仮説を立てられると思いました。 タスクへの取り組み方をどう見直す? 日々のタスクにおいては、なぜそのタスクを行うのか、課題は何なのかを問いの形でイシューを設定し、納得できる答えを探す取り組みを繰り返していきたいと考えています。このようにしてクリティカル・シンキングを自分のスキルとして浸透させたいと思います。 資料作成で心がけるべき点は? 資料作成やコンテンツ制作の際には、第三者に伝わりやすい見た目や内容、文章を意識して取り掛かりたいです。

データ・アナリティクス入門

自ら選ぶデータ分析の真髄

データ分析から何が学べる? データ分析を通じて、体系的な課題解決方法を学びました。実際に扱うデータは自ら補完する必要があるため、比較意識を持って必要な情報を選定するスキルを高めたいと考えています。 応用力はどこから来る? また、業務全般に応用可能なフレームワークや思考パターンを習得できたと感じています。単一の業務でなく、思考が求められる多くの場面で今回の学びを実践し、常に意識を持って取り組んでいきたいと思います。 課題対策は具体的に? 違和感や課題に直面した際は、確認を含む仮説の立案やプロセスの細分化を意識して行いたいです。分析フェーズでは、比較を通じて実証を目的としたデータ抽出や多角的な視点からの提案を心掛け、より具体的な検証ができるようになりたいと考えています。

データ・アナリティクス入門

業務の壁、ロジックツリーで突破

現状の課題は何? 現状の業務はマンパワーに依存しており、その結果としてメンバーが常に疲弊していると感じています。これまでいろいろ検討してきましたが、改めて状況を客観的に把握するため、今回学んだロジックツリーを用いて現状の課題を書き出そうと思いました。また、問題点が十分に認識されず、日々のルーチン業務に流されがちなため、what/where/why/howを意識し、積極的に問題提起を行いたいと考えています。 解決策はどう考える? すぐに業務に結び付けるためには訓練が必要だと感じています。そのため、教材で示されたコツや留意点を参考に、身近な問題解決にロジックツリーを活用する取り組みを始めます。さらに、解決の切り口となる項目をできるだけ多く洗い出すよう努めていきたいと思います。

クリティカルシンキング入門

論点で切り拓く未来への挑戦

講義の反省点は? 講義全体を振り返る中で、自己の意識に偏りがあったことを改めて実感しました。今後は、常に論点(イシュー)を意識し問い続けるとともに、ピラミッドストラクチャーやロジックツリーを活用し、MECEの原則に基づいて課題や問題を漏れなく、かつ重複せず整理しながら論理的に解決することを心がけたいと思います。 日常業務の課題は? また、日常業務で直面する問題や課題については、経験や勘に頼るのではなく、データと事実に基づいた論理的な思考を徹底する必要があると感じました。そのため、常に論点を念頭に置き、ピラミッドストラクチャーやロジックツリーを用いて体系的に整理し、根本原因や真因にまでたどり着けたかを振り返りつつ、再発防止の仕組みを確実に運用していきたいと考えています。

クリティカルシンキング入門

変数×層別で挑む業務の新解釈

分解の軸は正確? 業務上、さまざまな課題に取り組む際、プロセス分解を用いることが多いと感じています。実際、課題を分解するときに「いつ」「誰が」「どのように」という軸を意識して切り分けていますが、多角的な視点から分解することにはまだ慣れていないと実感しています。 切り口の工夫はどう? そのため、今後は層別分解や変数分解といった切り口も取り入れ、事象ごとに工夫して分析できるよう努めたいと考えています。これらの手法を使うことで、業務上のプロセスに対する課題解決に一層取り組んでいく所存です。 結果の正確性はどう? また、資料作成や他者への説明の際にも、層別分解や変数分解を活用し、分解した結果や解析内容が正確かどうか再確認することを心掛けたいと思います。

クリティカルシンキング入門

未来を創る論理思考の実践

考え方の基本って何? これまで、何気なく「考える」という行為を行っていましたが、今回の講座を通じて、考え方の基本について学ぶことができました。ロジックツリーやMECEなどのツールを習得することで、思考の抜け漏れを確認でき、より完成度の高い提案に結びつけられると感じています。 繰り返しで理解は? また、アウトプットを繰り返す中で自分の理解が深まることを実感しました。この学びを同僚と共有し、部署全体で統一された考え方を実践できるようになれば、効率的な問題解決に繋がると考えています。 意見の取り入れ方は? さらに、課題に対して自分の意見を一方的に押し付けるのではなく、周囲の意見を柔軟に取り入れながら最善の策を導き出していく重要性も学びました。

クリティカルシンキング入門

会議の成功はイシュー特定から

打ち合わせで何を見る? 部門施策の進捗状況を確認し、課題を洗い出す際に、この学習内容は非常に役立つと感じました。特に、チームで打ち合わせをする際に、時折解決策から話が始まってしまう場合があるので、この点を改善したいと思います。最初にイシューを特定し、それをチーム全員で共有することが重要です。また、打ち合わせの中で常にイシューを意識し続けることも心がけたいです。 会議前後の準備は? まず、打ち合わせ前に自分なりにイシューを特定してから会議に臨むことが大切です。そのイシューをチーム全員が認識できるように、議事録やメモに残して共有することも忘れてはいけません。さらに、打ち合わせ中もイシューを一貫して押さえ続けるために、途中でメンバーに確認をすることが必要です。

データ・アナリティクス入門

あなたも変われる学びの瞬間

データをどう活かす? 分析を行う際は、常に目的を意識しながらデータと向き合うことが基本です。データは単なる数字ではなく、素材と捉え、適切な調理方法や飾り付けで仕上げるように結果の表現手法を工夫する必要があります。各データの特性に合わせた分析プロセスを経ることで、他社にもわかりやすく咀嚼・理解される結果を得ることができます。 サポート状況はどう? また、作成されたサポートケース数の増減やカスタマーサーベイの結果を、製品、顧客、担当エンジニアなど複数の要素を組み合わせながら分析します。こうした取り組みによって、サポートチームが健全にオペレーションできているかを確認し、もし課題が見つかった場合には、その解決に向けた具体的なプランの策定も行います。

クリティカルシンキング入門

ロジックツリーで見える説得力

根拠の使い分けは? 根拠を使い分けるという発想はこれまで無かったため、提案を行う際に必ず課題の形成、その原因、解決策という流れで考えてきた自分にとって大変新鮮な学びとなりました。 ロジックツリーの効果は? また、資料作成や他部署への提案において、前提知識のある相手なら多少省略しても伝わるものの、実際の業務ではそのような場面は少なく、ロジックツリーを用いることで相手に明確に伝わる文章を作成する必要性を強く感じました。 説得力向上はどう? さらに、報告や資料作成において結論だけではなく、根拠が明確でないために論理が飛躍し説得力に欠ける場合が多かったことから、ロジックツリーを活用して、説得力のある提案ができるよう努めていく所存です。

データ・アナリティクス入門

数字のばらつきが描く成功のヒント

標準偏差の重要性は? 実績分析ではこれまで、平均値を求めることで状況を把握していましたが、標準偏差を算出してデータのばらつきを確認することはできていませんでした。課題解決に必要な問題の特定には、データのばらつきを捉えることが重要であると気づいたため、今後はまずデータ全体のばらつきを算出し、大まかな傾向を把握してから詳細な分析に取り掛かるようにしたいと思います。 エリア別売上の差は? また、営業実績の把握においては、従来は主に各時点の数値の差を比較する方法を採用してきました。今後は、売上が特定のエリアに偏っているかどうか、そしてその要因が何であるかをデータからしっかりと導き出すために、ばらつきにも注目しながら分析を進めていく考えです。

「課題 × 解決」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right