データ・アナリティクス入門

日常に息づく比較分析の知恵

比較方法はどう選ぶ? 分析を行う際は、比較が重要であると学びました。たとえば、ある要素の効果を検証する場合、その要素がある場合とない場合を比べ、その他の条件をできるだけ一致させることが求められます。 目的は何で大切? また、データを分析する前に、何のために分析するのか目的を明確にすることが大切です。その目的に沿って必要なデータを収集し、目的に合わせて加工や分析を行い、得られた結果を言語化することで、ビジネス上の判断材料として活用できます。 今後どう実践する? 今回の学びが直ちに業務に活かせる場面は少ないかもしれません。しかし、問題解決の基本的な考え方を意識しながら業務に取り組むことで、今後の課題解決に役立てることができると感じています。 継続の秘訣は? さらに、何事も使わなければ忘れてしまうものです。業務にすぐに適用できなくても、日常生活の中で今回学んだ分析手法を実践し続けることで、着実にスキルを磨いていきたいと考えています。

データ・アナリティクス入門

現状理解の大切さを知る分析の旅

問題の現状理解には何が必要? 私は、これまで「どうやって解決するか」にばかり意識が向いてしまい、問題の「現状を理解する」ための思考が不足していることに気づきました。分析には常に比較が必要であり、現状と理想との比較が重要だということを、今回の学びで強く感じました。 課題抽出と仮説立ての手順 課題を抽出し仮説を立てたあと、データを集めてさらに深く分析するという手順を大切にし、データに向き合いたいです。以前は課題解決のためのデータチェックを誤ることがありました。そのため、ロジックツリーの思考を身に付ける必要があると感じています。 ロジックツリーはどう活用する? まずは手元にあるデータの詳細な分析を行うために、ロジックツリーを具体的に図面として描いてみようと思います。その際、必要となる切り口をMECE(Mutually Exclusive, Collectively Exhaustive)に基づいて細かく分け、誤りなく課題を抽出したいです。

データ・アナリティクス入門

グループで広がる学びの輪

グループワークの価値は? グループワークで、普段の仕事の進め方や新たな学びの方法について話し合う機会があり、その経験を講座終了後も活かすことができたのは大変良いと感じました。 振り返りの意義は? ライブ講座では、これまでの学びを振り返ることができましたが、再度復習したいという思いも残りました。 どんな分析が役立つ? また、自分が普段担当していない手法であるファネル分析やA/Bテストについて学ぶことができ、新たな発見となりました。グループワークでは、原因の仮説を立てる際に3C分析を活用し、課題解決のフレームワークをいくつか身につけておくことで、仮説を立てやすくなると実感しました。 フレーム習得は難しい? 今後は、代表的な課題解決のフレームワークを3つ程度覚え、常に思考の一部として活用できるように努めたいと考えています。最初は難しいかもしれませんが、思考の確認として、予めAIに質問・確認するステップを取り入れることにしています。

データ・アナリティクス入門

データで読み解く解決ストーリー

なぜ原因を分解した? 総合的演習では、原因を一つひとつ分解し、必要な要素を紐解いていくプロセスを体験しました。分析作業では、何を比較するのか、またその比較からどのような意味合いや関係性が浮かび上がるのかを考察しながら、目的を明確にし仮説を立て、データによる検証のループを実感しました。 どのステップが有効? また、演習では課題解決のためのステップについて認識を深めることができました。具体的な状況を想定して仮説を設定し、分析内容をストーリーのように組み立てる過程は、プロセス全体を含めた納得感のある解決策となると感じました。こうした流れであれば、職場で共有しても十分に理解を得られると思います。 データで何が分かる? 現状分析においては、データの変化や数値の比較からどのような意味合いが導かれるのかを整理することが大切です。また、問題の原因や理由については、経験や感覚に頼るのではなく、データというエビデンスをもって示すことが求められます。

クリティカルシンキング入門

チームの課題発見と解決の秘訣

何を考えるべき? 考えを始める前に、何を考えるべきか、またどんな問い(イシュー)に答えを出すべきかを明確にすることが重要です。問いを具体化し、打ち合わせ中は常にその問いを意識することで、間違った答えや見当違いな答えを避けられます。 進捗はどう把握? 業務の取り組み状況を把握する際には、進んでいるチームと進んでいないチームを比較する必要がありますが、これは単に取り組み状況を定量的に確認するだけでなく、定性的にも捉えることが求められます。特に、取り組みが進まない理由を探る際には、店舗の大きさ、年齢、入社時期など、さまざまな角度から深く分析することが肝要です。 次年度方針はどう? 現在、次年度の方針を策定中ですが、この策定には今年度立てた目標に対する達成状況が影響します。目標の再設定や目標達成のための研修、会議の内容など、過不足を様々な角度からデータを分析し、1年後には自身の成長が実感できるような方針を策定したいと考えています。

デザイン思考入門

現場で輝く!成長の足跡

具体解決にどう挑む? 市民の困りごとに対しては、ただ単に共感するだけでなく、具体的な解決に向けた行動を促すことが求められます。そのため、課題が解決されない場合にどのような影響が起こるのか、また問題が解消されたときにどのような良い結果が得られるのか、具体的なイメージを持ってもらえるよう働きかける必要があります。 動機はどう高まる? ただし、重要な視点が共有され一部自分ごととして捉えることができているものの、現状維持の心地良さを捨ててまで動こうとする強い動機付けには至っていません。実際に取り組んで成果を上げている現場の事例を示すことで、説得力をさらに高めることが望まれます。 本質をどう見抜く? さらに、目に見える現象だけを改善しようとするのではなく、その背後に隠された問題の本質を見極めることが大切です。ユーザー視点を一人だけのものに留めず、問題解決の鍵を握る関係者とも情報を共有し、本質につながる情報を集め届ける姿勢が求められます。

クリティカルシンキング入門

立ち返る学び、成功の鍵を握る

改善点は何だろう? 資料をユースケースに落とし込むことで、改善点や事業の課題が明確になる一方、思考が偏り大切な課題や解決策を見逃してしまう可能性があると感じました。目先の答えに飛びつく自分の傾向を理解し、立ち返って他の要素も検討すべきだと気付きました。 関係構築はどうする? 新規事業の開発に向けては、広範な顧客―自治体から民間企業まで―との関係構築が必要です。そのため、説明や相談を行う相手がどのような人か、どんな情報を求めているのかを事前に把握し、相手の立場に立ったわかりやすい説明を心がけることが重要だと感じました。 具体策は整ってる? 具体的には、まず①相手の立場や求める情報を想定し、次に②その情報を論理的かつシンプルな形で提供できるように資料や提案内容を作成します。さらに、③相手の視点に立って説明のシミュレーションを行い、疑問点がないかを確認します。これらのプロセスを日常的に実行できるよう努めたいと思います。

データ・アナリティクス入門

比較で拓く新たな視点

比較の価値って? 分析の際、最初に比較の視点が重要であると実感しました。私自身、比較に対して苦手意識がありましたが、実務を通して比較分析を実施するうちに、他者の意見が新たな視点を与えてくれることを学び、自分以外の考えを取り入れる意義を改めて認識しました。 情報分析の秘訣は? また、上司から課題解決のための情報分析を依頼されたときのプロセスも振り返りました。まず、分析の目的を明確にし、次に何と比較するかを検討します。データが少ない場合は割合で表し、表を作成した上で適切なグラフによって視覚的に表現します。その結果を客観的に評価し、必要であればさらに深堀りした分析を行うという流れです。 視点の工夫は? 最後の課題では、男女別や地域別といった切り口での分析が有効であると感じました。ただ、これらの視点に気づくまでに時間差が生じてしまいました。あらかじめスムーズにアイデアが浮かぶようになるためのコツがあれば、ぜひ教えていただきたいです。

データ・アナリティクス入門

3C×4Pで解く故障改善の秘密

複数視点って何が肝心? 修理データの分析では、仮説構築の際に一面的な見方にとらわれず、複数の視点から網羅的に考えることが不可欠です。今回学んだ3C(顧客・自社・競合)や4P(製品・価格・流通・販促)のフレームワークを活用することで、故障原因や改善のポイントを多角的に把握できるようになりました。 故障原因はどう見える? たとえば、顧客視点では使用環境や年齢層による故障傾向が考えられる一方、自社視点では特定の機種や部品の設計上の課題に着目できます。また、競合視点では他社製品との比較による違いを仮説にすることも可能です。さらに、製品ごとの故障率や価格帯、販売地域ごとの傾向にも注目し、それらを関連付けながら仮説を検証していくことが求められます。 課題解決の鍵は何? このように、フレームワークを効果的に活用しながら問題解決に取り組むことで、修理データに潜む課題をより具体的かつ明確に把握することができるようになりました。

クリティカルシンキング入門

課題解決力を磨く「具体的な問い」

どう問いを明確に? 物事を考える際、まずは「問い」を立て、それを明確にすることが重要です。この際、「問い」は具体的であり、数値を示すことで客観性が増し、仲間とイメージを共有しやすくなります。「問い」を常に持ち続け、決して外れないことも大切です。 展示会で何を問う? 展示会業務運営の問題解決においても、「主催者からのアンケートや施工会社からの提案に対してどのように答えるか」「どこで問題が発生しそうかの洗い出し」など、具体的な問いを立てることが求められます。また、営業企画業務の立案においても、「効果的な研修立案」や「マーケティングの立案」といった問いを持つことが挙げられます。 指示の背景は? 上司からの指示があった場合には、なぜその指示が出されたのか、その目的や背景、いつまでに完了すべきかを把握することが必要です。解決すべき課題について、まずは自分だけでなくチーム全体で問いを共有し、ズレがないよう確認しましょう。

データ・アナリティクス入門

多角的視野で見るデータの魅力

仮説はどう広げる? 他部署の課題解決におけるデータ分析では、検討すべき切り口が多数存在することを意識し、決めつけることなく幅広い仮説を立てることが重要です。データを俯瞰的に捉え、各特性に合わせた代表値を用いながら、偏らない分析を心がけています。 比較軸はどう選ぶ? また、データ分析は比較を軸に、代表値とばらつきを見ることが基本です。集めた関連データから正確な傾向を把握し、単一の視点に陥らないよう、複数の見方を試みています。 分かりやすく伝える? さらに、分析結果を相手に伝えるためには、理解しやすい可視化が欠かせません。それぞれの人が異なる意見や感じ方を持つことから、相手の立場を尊重しながら意見を交えた説明を心がけています。 経験は視野を広げる? 今まで参加したグループワークや講義での交流を通じ、データの見方や可視化の手法は多様であると実感しました。その経験をもとに、柔軟な視点で課題に取り組むことができています。

データ・アナリティクス入門

問題解決の新たな発見と実践技巧

問題の特定方法には何がある? 問題の特定方法について、さまざまな考え方があることを学びました。特に、5W1Hを駆使して繰り返し考察を行うことで、より意義のある分析にたどり着けることがわかりました。また、MECE(Mutually Exclusive, Collectively Exhaustive)を意識することで、分析の精度が高まると理解しました。 定量的でない問題にどう対応する? この方法は、特に定量的でない問題やトラブルの対応に役立ちそうです。さまざまなシステムを活用しているため、どこに問題があるかを素早く把握するために、MECEやロジックツリーを活用して解決を図りたいと考えています。 ロジックツリーの活用方法を説明 具体的には、ロジックツリーをWordやExcelなどで作成し、問題を視覚的に整理することを目指しています。この方法により、直感的には気づかなかった問題や課題の本質を見つけやすくなると期待しています。

「課題 × 解決」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right