クリティカルシンキング入門

問題解決のための視座を磨く学び

課題の意識とは? 課題を意識し、情報を捉えていくことで、問題点を素早く明確にとらえたことが印象に残っている。 今週までに学んだ内容を一つ一つ実行することで、何が問題かを具体的に把握し、その結果具体的な解決策に辿り着くことができた。 課題解決のステップ 現状を認識し、課題を設定して解決することができる。例えば、売上を増やすためや、業界の傾向を把握するために必要な情報を正確に把握し、不足している情報を見つけることができた。また、仮説を立てやすくなり、素早い調査や解決策に到達する助けとなった。 多面的に問題を捉える方法 課題に取り組む際には、関係する相手の捉え方を意識し、ズレが無いよう確認して進めていきたい。課題を達成するためには、多面的に問題を捉え、解決策を考えていくことが重要だと感じた。 また、情報を新たに調べる際には、目的を意識し、逸れないように気をつける必要がある。手段を考える時には、その手段が目的に適っているかを常に意識することが大切だ。

戦略思考入門

課題解決を導くフレームワーク活用術

なぜ課題の抽出が重要なのか? 課題や論点の抽出において、もれなく重複なく進めることと、解決策を模索することの重要性が強調されています。この過程では、ステークホルダーと足並みをそろえて議論を深めるために、フレームワークの活用が有益です。ただし、各ケースに応じて最適なフレームワークを選択する必要があるため、事前の認識合わせが不可欠です。 フレームワーク活用の意義とは? 自社の営業戦略や施策実行の判断に際しても、フレームワークに基づくディスカッションとアウトプットの作成が、論点の漏れを防ぐ役割を果たします。また、このプロセスを通じて自社商品の特徴を再評価し、環境分析を実施します。 効果的な会議準備方法は? 普段の情報共有の場とは異なる長めの時間を設けて課題整理のディスカッションを行うことが提案されています。その前準備として適切なフレームワークを決定し、可能な範囲でアウトプットを準備することが求められます。これは、会議を効果的に進めるための重要なステップです。

デザイン思考入門

予期せぬ挑戦で深まる学び

経営層とのズレは? 総務の分野では、明確なゴールや課題意識が設定された状態で業務が依頼されることが多く、経営層と現場の考え方のズレを常に意識しながら問題解決に取り組む重要性を感じました。経営側が示すのは課題定義までであるため、実際に試作品を作る過程で予期せぬ問題が発生することを体験し、学びが深まりました。 AIデザインはどう? 生成AIを活用してデザインを作成する試みは、予想以上に難しいと感じました。自分のイメージを正確に反映させるためには、プロンプトの使い方をさらに工夫していく必要があると感じています。また、思いもよらない結果が得られることもあり、試行回数を意識することが大切だと思いました。 試作の修正ポイントは? 加えて、生成AIの利用はもっと意識的な操作が求められる点、試作後に自ら修正箇所を見出す経験が得られる点、そしてデザイン思考入門で学んだ手法が、自分の予想を超える、または改善された成果を生み出す可能性があることを実感しました。

データ・アナリティクス入門

数字で読み解く成長の軌跡

定量分析の鍵は? サンクコスト、定量分析、MECE、ロジックツリーという手法について学びました。定量分析では、データのどこに注目し、どこを比較するかが重要であることが分かりました。特に、①インパクト、②ギャップ、③トレンド、④バラつき、⑤パターンの各視点からデータの意味合いを読み取ることに注力しました。 MECEの意味は? また、MECEに関しては「もれなく、ダブリなく」に分けるだけでなく、意味のある切り分け方が重要であることを理解しました。この考え方を基に、現状と理想のギャップを明確にし、具体的な行動につながる方向性をメンバーに示すことが求められると感じました。 課題解決の道は? さらに、現状の課題として、分析結果の共有時にメンバー間で理解のずれが生じたり、行動に直結しない点が挙げられます。なぜこのような分析が必要なのか、そこから得るべきものは何か、そして課題の解決につながる具体的な実施方法について、今後さらに明確にしていく必要があると感じました。

クリティカルシンキング入門

イシューの重要性を理解し、プロジェクトを成功に導くポイント

イシューを考えていますか? 課題解決の手法を学ぶだけでなく、そもそもの課題である「イシュー」を考えることの重要性を学びました。特にチームで取り組む場合、イシューについての共通認識がないと、話がどんどん発散してしまうことが多いです。 プロジェクトの目的は明確? プロジェクトをまとめたり、ミーティングのファシリテーションをする際にもイシューを明確にすることが大切です。何のためのプロジェクトか、何を決めるためのミーティングかをしっかり把握することで、議論が散漫になるのを防ぐことができます。自由に議論しながらも、このポイントを押さえることが効果的です。 長期プロジェクトで大切なのは? 特に長期のプロジェクトにおいては、問いを常に意識することが最も重要だと考えます。「そういえば何のプロジェクトだっけ?」とならないように、プロジェクトのミーティングでは前回のミーティングで決めたことをおさらいする前に、まず問いの確認から始めることを取り入れてみようと思います。

データ・アナリティクス入門

仮説で描く未来の戦略図

仮説整理はどう進む? ビジネスフレームワーク(3C、4Pなど)を活用することで、なんとなくで仮説を立てるのではなく、複数の仮説をMECEに整理できるという認識が得られました。また、仮説には「結論の仮説」と「問題解決の仮説」の2種類があることを知り、仮説に対する考え方が大きく変わったと感じています。 課題解決は何を問う? マーケティング施策の企画段階では、まずお客様の課題が何であるかを明確にし、What、Where、Why、Howのプロセスに基づいた問題解決の仮説思考を用いることで、心に響く施策を考案したいと考えています。一方、振り返りの際には、施策の結果を踏まえた上で結論の仮説を用い、データを検証していくことが重要だと感じました。 計画実行はどう見る? 今年度の施策の振り返りと来年度の計画を進める時期にあたり、初めからデータを集計するのではなく、まず仮説を立て、その検証に必要なデータを収集・比較分析するアプローチを取り入れていきたいと思います。

データ・アナリティクス入門

データ分析で未来を描く方法

目的を明確にする重要性 目的を明確にすることは、分析作業の基本です。これまで私は、過去の経験に基づいたバイアスを持ちながら、取り組みやすい課題解決策から進める方法を取ってきました。しかし、バイアスを取り除き、基本に立ち返ることが重要だと感じます。分析では、比較や言語化が鍵となります。 数値化で課題を明確化 現状とあるべき姿とのギャップを分析し、比較することで、課題のレベルを数値化したいと考えています。業務レベルの改善や変革を推進するにあたっては、数値による判断材料の精度を高め、プロジェクト内での共通理解を促進し、推進の結果を最大限引き出したいです。 合意形成と重点課題の抽出 まずは、プロジェクトメンバーの間で目的を明確にし、合意形成を図ります。そのうえで、データの収集と加工を行い、比較分析により重点課題を抽出します。最後に、その分析結果を基にアクションプランを言語化し、業務レベルでアセスメントを実施して、体制、スケジュール、予算を計画します。

デザイン思考入門

顧客と社員の声が未来を開く

なぜ人間中心なの? プロダクトアウトではなく人間中心の考え方に、とても印象を受けました。特に、先生が事例として挙げてくださった冷蔵庫の機能の説明を通じて、同様の傾向が他の製品にも見受けられることに気づきました。誰をターゲットに設定し、どのニーズに応えるかという視点の大切さを再認識する内容でした。 どうお客様に寄り添う? 現在、社内では組織改編を進めています。マニュアルやルールに頼りすぎるとスタッフの思考が停止してしまうことを懸念し、まずはお客様にどのようなサービスを提供すべきかを目的から再定義することにしました。これに基づき、スタッフが能力を最大限に発揮できる業務フローの整備を目指しています。まずはお客様の声を集め、現行の業務フローにおける課題を洗い出した上で、現行のサービスやその提供方法がターゲット層に適しているかどうかを確認し、スタッフからも意見を聴取する予定です。顧客と社員の両方の意見を取り入れ、本質的な問題解決に努めたいと考えています。

データ・アナリティクス入門

実践で磨く論理的仮説力

復習会で何を学んだ? 今週は、学んだ内容を振り返る復習の会が行われました。授業内での演習では、これまで学んだ知識が実際の場面で役立つことが多く感じられましたが、フレームワークの定着が不十分なため、仮説を立てる際に無計画に仮説を出してしまうこともありました。しかし、即座にフィードバックを受けることで、その意見が定着の助けとなり、次のステップに進む良い機会となりました。 業務でどう活かす? 学んだ内容は、業務での問題解決や意思決定に大いに役立ちそうです。例えば、部門で課題が発生した場合、データ分析を用いて仮説を構築し、フレームワークで整理することで、明確な解決策を導き出しやすくなります。また、新しいツールや業務プロセスの導入時には、評価軸を設定し、客観的に比較する方法が意思決定の支援に有効です。今後は、データ分析技術やフレームワークを日常的に意識して活用し、論理的な仮説立案を習慣付けることで、業務の説得力と成果を高めていきたいと考えています。

デザイン思考入門

限られ時間に咲く学びの花

どうして時間が足りない? 日々の生活の中で感じる課題は多岐にわたりますが、働く社会人としての立場から見ると、特に「時間が十分にない」ということが根本にあると感じます。このため、仕事以外の活動や用事が後回しになり、常に何かに追われているような感覚に陥るだけでなく、限られた時間で無理をしてしまい、寝不足や不規則な生活などの問題が生じています。現状では、仕事以外のタイムマネジメントやタスクマネジメントに課題を感じるものの、その解決策について今すぐ結論を出す必要はないと認識しています。 解決できなければどうする? また、定性分析を通じて課題の具体性を明らかにする取り組みの中で、「その課題が解決されなかったとしたら、どのような回避的行動に出るか?」という考え方に特に興味を引かれました。このエクササイズにより、課題が解決された場合と解決されなかった場合の両面を具体的にイメージでき、それが新たな解決方法を導く上で非常に有用な発想につながると感じました。

データ・アナリティクス入門

グループで広がる学びの輪

グループワークの価値は? グループワークで、普段の仕事の進め方や新たな学びの方法について話し合う機会があり、その経験を講座終了後も活かすことができたのは大変良いと感じました。 振り返りの意義は? ライブ講座では、これまでの学びを振り返ることができましたが、再度復習したいという思いも残りました。 どんな分析が役立つ? また、自分が普段担当していない手法であるファネル分析やA/Bテストについて学ぶことができ、新たな発見となりました。グループワークでは、原因の仮説を立てる際に3C分析を活用し、課題解決のフレームワークをいくつか身につけておくことで、仮説を立てやすくなると実感しました。 フレーム習得は難しい? 今後は、代表的な課題解決のフレームワークを3つ程度覚え、常に思考の一部として活用できるように努めたいと考えています。最初は難しいかもしれませんが、思考の確認として、予めAIに質問・確認するステップを取り入れることにしています。

データ・アナリティクス入門

現状理解の大切さを知る分析の旅

問題の現状理解には何が必要? 私は、これまで「どうやって解決するか」にばかり意識が向いてしまい、問題の「現状を理解する」ための思考が不足していることに気づきました。分析には常に比較が必要であり、現状と理想との比較が重要だということを、今回の学びで強く感じました。 課題抽出と仮説立ての手順 課題を抽出し仮説を立てたあと、データを集めてさらに深く分析するという手順を大切にし、データに向き合いたいです。以前は課題解決のためのデータチェックを誤ることがありました。そのため、ロジックツリーの思考を身に付ける必要があると感じています。 ロジックツリーはどう活用する? まずは手元にあるデータの詳細な分析を行うために、ロジックツリーを具体的に図面として描いてみようと思います。その際、必要となる切り口をMECE(Mutually Exclusive, Collectively Exhaustive)に基づいて細かく分け、誤りなく課題を抽出したいです。

「課題 × 解決」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right