データ・アナリティクス入門

問題解決の視点で成長する方法

何が最優先? 問題解決の考え方では、まず最も重要な問題を特定することが大切です。「何が問題か?」という視点から始め、数値を比較して問題の所在にあたりをつけます。また、理想の計画と現状の未達成状況を把握し、そのギャップを埋める方法を検討します。数値の比較では、見る必要のない範囲を見極めて効率的に分析を進めることも重要です。 現状はどう捉える? 現状把握の際には、問題をさらに深掘りするための切り口を考え、その仮説や優先順位をつけていきます。この過程では定性的な情報も取り入れることが重要です。特に、数値に頼りがちな初期の分析では、仮説の形成において定性的な情報を活用することが印象的でした。 分解して見える? ロジックツリーの層別や変数の分解を用いて課題に取り組むと、目標達成のための具体的な施策が見えてきます。たとえば、採用施設数や売上の向上、コストカットといった課題に対処する際は、変数分解の考え方が役立ちます。また、メーカー推奨品の効果を確認する際には、計画と実績を数値で評価し、感覚的な良し悪しに頼らず客観的に判断することが求められます。 分析の工夫は? 分析を進める際には、「見なくてもよい範囲・数字・切り口」を適切に除外することで、効果的な分析が可能になります。データの切り口についても、何が効果的か考え、必要であれば追加のデータ取得を検討します。また、チームメンバーとアイデアを共有し、他に異なる切り口の可能性がないかを確認することも重要なプロセスです。

データ・アナリティクス入門

振り返りで切り拓く未来

集客前提を疑ってみる? スクールの課題に対する対応優先順位を誤ってしまいましたが、そこには「また間違った集客を繰り返しそう」という隠れた前提がありました。まずは、この前提を改めることが必要であり、その上で真に解決すべき課題を特定する必要性を感じました。また、生徒データの切り口に関するブレストの中で、「ああそうだ、その観点も必要だ!」との意見があったことから、広い視野を持って落ち着いて検討する重要性を再認識しました。 数字の分析意図は? 分析したい項目がそもそも十分に取得できていない場合もあるため、あらかじめあきらめる部分もある一方で、見るべき数字の優先順位はしっかり決めて取り組む意向です。具体的には、イベントアンケート結果や申込者のデータについて、単に分析するのではなく「何が知りたいのか?その目的は何か?」と自分に問いながら進めるようにしています。 アンケート分析の意義は? 各イベント終了後には、アンケート結果と申込者属性の分析を行い、その内容を報告する必要があります。その際、以下の点を意識して業務にあたっています。まず①どの数値項目を優先的に見るのか、次に②その数値が他のイベントと比較して問題ないか、さらに③比較する際には条件を揃えているか、そして④関係者に報告する際には自分の仮説をセットで伝え、議論を促すかという点です。 特に②以降の実施が十分ではないと感じているため、限られた時間の中で箇条書きなどで条件を明確にし、意識しながら取り組むことを心がけています。

データ・アナリティクス入門

仮説検証で未来を切り拓く

仮説の立案方法は? 今回の講義では、「問題解決の4つのステップ」のうち、問題箇所を特定した後に原因を究明するため、原因の仮説を立てて検証するデータを集める考え方を学びました。原因の仮説立案には、3Cや4Pなどのフレームワークが有効で、視野を広げる軸となると実感しました。 なぜ複数仮説? また、実践力を養うためには、決めつけずに複数の仮説を立て、ヒト・モノ・カネといった要素に網羅性を持たせることが大切です。数字をただ分析するのではなく、何と何を比較して検証すべきかを深く掘り下げる視点が必要だと感じました。 仮説の分類と時間は? ビジネスにおける仮説思考は、「ある論点に対する仮の答え」として、結論の仮説と問題解決の仮説に分類され、時間軸(過去・現在・未来)に沿って内容が変わることが分かりました。正しく仮説検証を実施することで、説得力や仕事のスピード、精度が向上することも理解できました。 仮説習慣の活用法は? 普段から仮説提案型営業を心がけている私にとって、今回の講義は仮説検証の重要性を再認識する良い機会となりました。今後は、3Cや4Pのフレームワークを具体的に活用し、仮説を考える習慣を更に身につけていきたいと思います。 実務での仮説活用は? 日々の業務では、課題解決と検証を繰り返しています。どんな難しい案件に直面しても、自分なりの仮説立案法や問題解決のアプローチについて、フリートークで意見交換ができれば、より一層の学びと成長につながると感じています。

クリティカルシンキング入門

問いを極める学びの軌跡

問いをどう明確にする? 私は、まず課題を解決するために「解決すべき問い」を明確に言語化する重要性を学びました。これまで、問いが十分に明確化されないまま作業を進めた結果、関係者との認識にずれが生じ、手戻りが発生した経験があります。今後は、関係者との擦り合わせを徹底し、共通認識を形成することで、作業の論点を絞りロスを減らすことが大切だと感じています。また、課題解決に際しては、問題を適切な粒度で分解・構造化する必要があると実感しました。自分一人だけで切り口や構造を考え込むのではなく、他者の意見を聞きながら、異なる事象にも応用できるフレームワークを検討することが効果的です。 伝わる文章って何? 文章作成においても、伝わりにくい文章は読み手に不要な負担をかけてしまうため、相手の視点に立った配慮が必要であると学びました。以前は、メッセージとその根拠を十分に整理しないまま文章を作成していたため、一貫性に欠け読みづらい内容になっていました。そこで、文章を書く前にメモや別紙でメッセージと根拠を整理し、関係者の立場や視点を考慮した上で、わかりやすく簡潔な文章を心がけるようになりました。 資料の説得力って? また、パワーポイントなどの資料作成においては、各スライドで伝えたいメッセージと、図表から読み手が受ける印象を一致させることが肝要だと感じています。これにより、資料全体の説得力と理解しやすさが向上するため、今後のプレゼンテーションにも積極的に活用していきたいと思います。

クリティカルシンキング入門

問いが拓く本質と成長の軌跡

イシューの本質は何? 解決すべき課題、つまりイシューを明確にすることの大切さを学びました。なぜなら、本質ではない課題に取り組むことで無駄な時間が増えてしまうからです。また、イシューは経験的に忘れやすいため、定期的に振り返ることも重要であると感じました。(会議中に議論が横道にそれる場合などが参考になりました。) チームリーダーの疑問は? 一方、来年度からチームリーダーを任される立場として、今まで経験のなかったタスクの引継ぎを受けています。その際、タスクの目的、成果物が誰にどのように利用されているか、関係者は誰か、そしてタスクの重要なポイントはどこかといった問いを立てることで、タスクの理解度を高めたいと考えています。特に、リーダーが直接対応するタスクが逼迫すると、顧客からの新たな依頼に迅速に対応できなくなる懸念があるため、事前の段取りをしっかり整えることが求められます。 振り返りで学んだことは? これまでの学びを振り返ると、客観的に物事を捉えるためには、適切な問いを立て、複数の切り口から情報を紐解いて構造化することが不可欠だと再認識しました。しかし、過去はしっかりとした問いを設けず、経験や感覚だけで「類似している」と判断していたため、解像度が粗くなり、手戻りやミスによる工数の増大という問題を招いていました。特に未経験の業務においては、解像度がさらに低くなりがちなため、今後は問いを意識的に立て、記録しながら振り返る習慣を継続していくことが重要だと感じています。

データ・アナリティクス入門

分析で開く意思決定の未来

仮説検証の視覚化は? ライブ授業では、これまで学んできた課題の特定方法や仮説の設定、結果の検証といったプロセスを再確認することができました。特に、仮説検証の成果をどのように可視化するかについては、参加者の意見を聞く中で、棒グラフや円グラフ以外にも表現方法が存在することを知り、新たな視点を得ることができました。また、限られた分析時間の中で、本当に必要な分析を見極めることの重要性を改めて実感しました。データが手元にあると分析したくなりますが、何のために分析するのか、得られた結果をどう活用するのかを常に念頭に置いて進めるべきだと感じました。 分析目的と改善は? 講座を受講する前にデータ分析を学ぶ目的は「意思決定に活用するため」であり、その目的は6週間の学びを経ても変わっていません。授業内ではマーケティングに関する事例も取り上げられましたが、現業務において活かす機会は少ないと感じます。一方で、A/Bテストや4P分析は業務改善のための改善案策定に、また相関分析は将来の経費推計に役立つと考えています。 何かを決定する際は、まずデータ分析で解決可能かどうかを検討しています。その際、何のために分析を行うのか、何を明確にするのかを設定し、ただ単にエクセルでグラフを作成するのではなく、その手法が最適かどうかを熟慮することを習慣にしています。また、年1回の定例報告の場合、長年変わっていない報告形式も多いですが、可能な範囲でより伝わりやすい形式に改善していくことが重要だと感じています。

データ・アナリティクス入門

共通認識で拓く学びの未来

理想と現実のズレは? 問題の特定手法には、理想の状態と現状のギャップを洗い出す方法と、ありたい姿と現状のギャップを明らかにする方法の2種類があると感じました。ネガティブな要素に目が向きやすい前者は、問題解決においてよく用いられます。しかし、一方で特に問題が認識されない場合、現状維持に陥り停滞を招く恐れもあります。後者の未来志向の在り方は、変化の速い現代において、より意識的に持つべき視点だと理解しました。 共通認識ってどう? ありたい姿は非常にあいまいな概念であるため、関係者間での認識を一致させる必要があるという点にも強く共感しました。そのため、データ分析を共通認識とし、フレームワークを活用して読み解くことが、皆が同じ言葉で議論を進めるための重要な手段となると考えます。これまで別々のロジックだと思っていたものが、密接に関連していることを実感できたのは、今回の学習の大きな収穫でした。 推進策はどう考える? また、私はダイバーシティ推進という、答えの出しづらい課題に取り組んでいます。問題の焦点が定まりにくく、方向性がぶれがちなことに悩んでいましたが、どちらの軸で取り組むかを再確認することで、ぶれがなくなったと感じています。さらに、データ分析や論理ツリー、その他のフレームワークを用いることで、説得力のある共通認識を形成し、場当たり的ではないロードマップを描くことが可能になりました。今後も学んだ手法に立ち返りながら、よりロジカルに推進策を検討していきたいと思います。

データ・アナリティクス入門

仮説思考で見つける学びの道

学びの目的は何? ライブ授業を受けて、これまでの学びを振り返ることができましたが、なお十分に理解しきれていない部分もあり、実際に活用するイメージがまだ明確ではないと感じました。特に、データ分析に着手する前に「目的」や「仮説」が重要であるという基本原則をしっかりと自分の中に落とし込み、何のために分析を行うのかを意識する必要があると思っています。 仮説検証の流れは? 分析のプロセスは、まず仮説を立て、それを検証するためにデータの収集や加工を行い、そこから新たな発見へと結びつける流れであることを再確認しました。データそのものが分析の起点になるのではなく、あくまで仮説を検証・裏付けるためのツールとして位置づけ、目的と手段が逆転しないように意識することが大切です。 仮説思考で解決? また、業務上で大量のデータ分析に直接接する機会がなくても、さまざまな場面で問題解決が求められることは事実です。こうした状況においては、仮説思考に基づいたアプローチで検証を進めることで、課題解決に向かう思考プロセスを常に意識する必要があると感じました。 思考プロセスを活かす? さらに、データアナリティクスの思考プロセスを基本に据え、テクニカルな側面に偏ることなく、仕事や日常の課題に取り組む際にもこのプロセスを意識することが重要だと思います。直接的な事例に触れる機会が少なくても、まずは解決すべき課題に向き合う際に、今回学んだ思考のプロセスを活かして取り組む姿勢が大切だと感じています。

クリティカルシンキング入門

思考の幅を広げる!視点変革術

思考の枠組みはどう? 論理的に考える人は、思考を始める前にどの思考の枠組みを使うかを決めています。会社での議論でも、クリアに答えを出す人は、その思考が整理されていると感じることが多いです。なぜそのように論理的に答えを出せるのか考えると、やはり思考の枠組みを選んでから考えることが重要だと気付かされました。そして、人の思考は意識していても偏ってしまうものです。これは非常に印象的なことで、「意識しても人の思考は偏る」という前提を理解することが思考の幅を広げるために重要だと思いました。 思考の広がりはどう? この講座では、思考を広げるための方法として「視座」「視点」「視野」を変えることを学びました。この手法を使って、思考の広さや深さを意図的に伸ばしていくことをこれから学んでいきたいです。 議題の核心は何? 幹部会での議論は、しばしば答えが明確でない問題の連続です。現状の偏った思考のままでは、やはり偏った見解や解決策に陥りがちです。今後は、議題が出た際に「そもそもこの目的は何か?」「本当に解決すべき問題なのか?」「この解決策しか方法はないのか?」といった問いを自分に投げかけることで、議論をよりクリアに進めていけそうです。 整理の型はどうなる? 思考が偏らないようにするために、目的や課題などを整理する思考の型を作成し、そこに情報をどんどん入れ込んで考えてみることも有効かもしれません。これをトレーニングとして実践することで、より論理的な思考の助けとなるでしょう。

クリティカルシンキング入門

イシューを明確化して成果を最大化する技法

課題発見のための具体的手法は? 本質的な課題を発見するためには、対象を分解し問題点を明らかにし、その対策を検討することが重要です。その際、グラフなどを使用して問題点を的確にあぶり出すことが効果的です。手当たり次第に検討するのではなく、焦点を絞ることが求められます。 イシューの重要性を理解 イシューを明らかにし、常に意識することも重要です。打合せなどでは、まずイシューの共通認識を持つことが必要です。これは基本的なことですが、実践するのは難しいです。打合せの目的(イシュー)を共通認識として持つことが不可欠です。 業務を進める上でも、まず自分の中でイシューを明確にし、それを持ち続けることが大切です。必要に応じてイシューを修正する際も、その目的を明確に意識し続けます。 他社データの活用法とは? また、同業他社や好きな会社のデータを見て分析し、自分の仕事に活用することができます。考えるための題材は自分の仕事以外にもたくさんあり、例えば同業他社の有価証券報告書などからも情報を得ることができます。 打合せでは、その目的(イシュー)を最初にアジェンダに記載し、全員が共通の認識を持てるよう確認することが重要です。また、新聞や書籍などのグラフに注目し、その場合に適したグラフを選ぶ視点を持つことも有益です。 さらに、新聞記事や自分の業務を進める上で、常に目的やイシューを意識しながらメモを取ることが有効です。これにより、意識的に課題や解決策に集中することができます。

データ・アナリティクス入門

ひらめき!挑戦の軌跡

問題解決の狙いは? 問題の所在を明らかにするためには、セグメンテーションや条件分けが重要です。まずは層別分解に取り組み、プロセスのどこに弱点があるかを見極めることが求められます。こうすることで、解決策が散漫にならず、問題の本質にフォーカスできます。 仮説はどう洗い出す? 仮説の洗い出しは容易ではなく、思いついたことをそのまま書き連ねても網羅性が得られにくいという課題があります。そこで、まずは核となるアイデアを抽出し、それを一般化したうえで再び具体的な形に落とし込む方法が有効です。さらに、対となるカテゴリも設定することで、フレームワークを活用した仮説の構築が可能になります。 データ活用はどう進む? また、「データドリブン経営」の推進に向けては、必要な検討やデータ収集、分析、結果の共有が事業改善の鍵となります。基礎的な経営結果データを効率的に可視化し、顧客タッチ数などの経営結果を動かすドライバデータを補足することが大切です。これにより、どのような意思決定を行うか、またそれに必要なデータが何かを明確にすることが可能になります。 売上分析のポイントは? さらに、売上分析環境の構築にも注力する必要があります。たとえば、PowerBIを活用すれば、各メンバーが見たい切り口でデータを分析できる環境を整備できます。具体的には、商談数、顧客タッチ数、提案数、商談期間などのデータを取得し、可視化することで、より精度の高い意思決定を支える基盤が構築されます。

戦略思考入門

新参者の視点で戦略を刷新する方法

慣例を捨てる視点とは? 戦略を考える際に重要なのは、昔からの慣例や惰性で行っていることを見直し、捨てる視点を持つことです。しかし、長く同じ部署や会社にいると気づかないことも多いので、新参者の目を活用するのが有効です。 判断基準をどう明確化する? 何を優先するかの判断基準を明確にすることで、捨てる判断を容易にし、関係者の納得感や後からの振り返りも可能になります。また、トレードオフでどちらかを選ぶだけでなく、両方の良いとこ取りをして効果を最大化することも考えられます。 自発的行動をどう引き出す? 変革の8ステップの5番目である「自発的な行動を生み出す」場合には、「次は何をする?」と問いかけることで、相手に考えさせ、指示して動かすことから脱却させます。 課題解決での優先順位は? 現在の業務である課題解決の方針検討では、いくつかの対策方向性を考えても完璧な案は存在せず、トレードオフが発生しています。そもそものイシューに立ち返り、物事の優先順位を考えた上で総合的に判断し、選択する必要があります。他者との合意形成では、この優先順位が一致するかどうかが重要です。 部下の成長をどう促進する? 次にどうすれば良いのか部下に聞かれた際には、逆に「どうする?」と問い返し、自発的な行動を促します。それにより、部下と上司の時間を節約し、業務のスピードも向上し、部下の成長を促進できます。ただし、間違った方向に進まないよう、これまで以上の頻度で状況確認が必要です。

「課題 × 解決」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right