データ・アナリティクス入門

問題解決へのアプローチを学ぶ

原因をどのように探る? 原因を探究することについて学びました。問題の原因を明らかにするためには、その問題に至るまでのプロセスを分解して考えるアプローチがあります。複数の解決策を用意し、それらを判断基準の重要度に基づいて根拠をもって絞り込むことが重要です。 データ分析の精度を高める方法は? 具体的なステップを踏んでデータを分析し、問題解決の精度を高める方法や、仮説を試しながらデータを収集し、より良い解決策に繋げる方法を学びました。これら両方のアプローチを組み合わせることで、データ分析の精度を一層高めることができます。例えば、「自分の残業時間」について考えてみると良い練習になります。 A/Bテストはどのように進める? 【A/Bテストについて】 A/Bテストとは、二つの施策を試し、比較するテストです。目標の設定から始まり、改善ポイントの仮説設計、実行までのステップを踏みます。優位なデータ数が集まるまで行い、その期間内で検証を行うことが重要です。目的と仮説を明確にし、シンプルで低コストかつ少ないリスクで運用できるようにすることが求められます。 残業問題をどのように解決する? 試しに「自身の残業時間」の多さについて考えてみました。棚卸できる業務をその場しのぎで抱えていたり、時間割やスケジュールの把握が疎かになっていたりと、整理すべき項目はいくつか見つかりました。複数の解決策を導くためには、まだ整理しなければならない複合的な原因が残っていますが、「有耶無耶」な部分を明確にすることで解決策が見えてきました。 今後の課題解決のステップは? 今後は、メンバー個別の面談や少人数のミーティングを通じて、現在の課題を一緒に洗い出し、原因を突き止めてみることを実践したいと考えています。そして、仮説を立て、複数の解決案をもって組織としての意思決定や問題解決に繋げていきます。

データ・アナリティクス入門

分析で見つけた新たな発見と気づき

比較による効果測定とは? 分析とは、比較することである。まず、分析する項目を整理し、各要素の性質や構造をはっきりさせることが重要だ。何かの効果を測りたい場合、「ある」場合と「ない」場合で比較を行い、分析対象以外の条件も整える必要がある(これは「Apple to Apple」と呼ばれる)。 データ分析の目的と仮説 データ分析を行う際には、まず目的と仮説を立てる。例えば、データ分析の目的は何で、その結果どのような状態を目指すのかを明確にすること。そして、どの項目を分析すれば目的を果たせるのか、その項目をどのようにデータ加工すれば良いのかを考え、具体的な仮説を立てることが大切だ。 適切なデータ加工と表現法 データにはその種類に応じた加工法やグラフの見せ方が必要である。割合で表現するのが適切な場合と、実数(本来の値)で表現するのが適切な場合がある。また、質的データ(数値の大小に意味がないもの)と量的データ(数値に意味があるもの)の違いを見極める必要がある。 人事部門のデータ活用法 人事部門では、健康経営やエンゲージメントに関するデータを扱い、改善に向けた施策を企画することが多い。このため、データを活用して課題解決や目標達成のためのPDCAサイクルを効果的に回せるようにすることが求められる。これまでの施策参加者がどれだけ改善したか、「参加した人の中で●●をした人はより■■だった」といった分析を行うが、このためには、参加者と不参加者の間での比較を行うことが重要だと感じている。 目的設定と議論の重要性 まずは、目的を明確にし、自分自身の思い込みや仮説に偏らず、上司やメンバーと徹底的に議論することが必要だ。次に、課題に対して目指す姿を定量的にKPIとして設定し、現状を把握する。算出するデータに定義と根拠を持ち、それを分かりやすく伝えるスキルを身に付けることも重要である。

戦略思考入門

賢い選択で効率化を目指す!

捨てる理由は何だろう? 今回のWEEKで学んだことは、「捨てる」という行為の重要性でした。特に、目的と数値的根拠(特に利益)を持って選別することが重要だと感じました。WEEKを通して感じたのは、物事の整理・分析をし、大局的な視点で差別化した戦略を立てることで、目的をもって選択(捨てる)するサイクルが大切だということです。 効果をどう見極める? ビジネスでは、投資対効果の高いものだけを選び続けるのが理想です。しかし、最初からすべて効果の高いものを作り出すのは難しいと実感しています。限られたリソースの中で新しい施策を試しながら、投資対効果の低いものを捨て、高いものを残すというサイクルを繰り返すべきだと明確になりました。何を目的に捨てるのかをしっかり考え、一度選択したことでも目的をもってやめることが重要だと感じました。 選別基準は何だろう? WEEK内の課題では、実際に企業へのアプローチ方法を考える設問を通じて、何を基準に取捨選択するかを理解しました。これまでは漠然とした時間や工数で判断していましたが、利益率で優先順位を判断することが重要だと学びました. 集約のポイントは? 仕事の集約に際しては、効率性の高い内容を優先的に集約していきたいと思います。また、実行して非効率だと判断した場合は、捨てる選択をする勇気を持つことも心掛けます。さらに、多回数の会議や定例業務を見直し、品質を上げたい業務に集中できるように整えたいと考えています. 効率向上の戦略は? まずは目の前の問題に取り組み、課題解決に活かしていきたいです。高品質化と効率化を実現するため、現時点での課題であるリソース不足に対処します。費用対効果の悪い業務を洗い出し、捨てるかどうかをリストアップし、その上で新たに生み出したリソースをどの業務に集中させるかを選択していきたいと思います.

データ・アナリティクス入門

データ分析で解く業務の課題解決法

データ分析はなぜ有用? データ分析は、問題解決を確実に進めるために非常に有用であると理解しました。ライブ授業では、前提条件が整理されていたため、問題解決のステップである問題箇所の特定や絞り込みが比較的容易でしたが、実際のビジネス現場では、これらのステップが難しく、訓練が必要だと強く感じました。 売上減少はどう解決? 今回のライブ授業では、事業運営における売上減少という問題をデータ分析で解決する演習を行いました。その際の問題解決のステップは、1. Whatで問題を明確にし、2. Whereで問題箇所を絞り込み、3. Whyで原因を分析し、4. Howで解決策を考えるという流れです。 具体分析の進め方は? 具体的には、売上減少という問題を特定し(What)、売上を構成する客単価や客数のデータ分析を通じて問題の所在(Where)を特定しました。その要因を仮説・検証により原因分析(Why)し、次に打ち手を判断・評価する(How)という手順です。分析においては、データに基づいたストーリーを構築することが重要です。比較対象を明確にし、データを加工して必要な情報を可視化することがポイントです。 差異の原因は何? 日常業務でも計画と実績との差異分析を行っていますが、浅はかな要因分析に留まらないように、原因分析を網羅的に行うことが重要だと考えます。また、問題を明確にし、問題箇所を特定し、原因分析し、打ち手を考える一連の手順によって、データ分析が目的化せず、何を主張するための分析なのかを振り返ることができます。 定着はどのように? これらの問題解決のステップを習得し、データ分析を取り入れた一連の流れを月に2回以上実施することで、手法の定着化を図りたいです。特に、問題箇所の特定(Where)に苦手意識がありますが、事例を積み重ねることで対応時間の削減にも取り組みます。

クリティカルシンキング入門

深掘りの習慣で得た視点の力

深く考える習慣をどう養う? 物事を深く考える習慣を身につけることが大切だと感じました。表面的な情報にとどまらず、本質や意図を常に考える姿勢を保ちながら、鋭敏な感性を持つことが重要です。物の見方も偏らず、多様な視点で捉える姿勢が大事です。新しい発見や視点から考えることで、これまで気づかなかった発見に出会えるのではないかと思います。また、感情に流されることなく、感情的にならずに判断することが求められます。これらのプロセスを経て、質問する力がつき、自信も生まれるでしょう。こうした過程が、正解に至るためのプロセスであり、それこそがクリティカルシンキングだと感じています。 IT業界での活用法は? 私はIT業界に従事していますが、問題解決やトラブルシューティングの場面でこの考え方が役立ちそうです。エラーが発生した際にはまず「その本質は何か?」と考えることから始めます。また、要件定義や仕様書作成の際にも、顧客の要件や要望を本質から理解することで、顧客要望の実現度に比例した品質を追求できます。プロジェクトの意思決定でも、複数の選択肢からベストなものを判断する助けとなるでしょう。具体的な例では、コードレビューが挙げられ、そのロジックが何を実現しようとしているのかを把握するのに有効です。リスク評価やセキュリティ対策など、ほぼすべての場面でこの考え方が役立つと感じています。 具体的なスキル向上法は? まず、明確な目標を設定し、どの業務や場面に適用するか課題を設定します。次に情報収集を行い、報告する情報や受け取る情報の正確性を確認します。その際、情報を疑ってみたり、批判的に見る癖をつけます。話をする際には複数の視点を持ち、問題を小さな単位に分解して考える習慣をつけます。また、感情的になるのを避け、感情と事実を分けます。これらを習得し続けてスキルを磨くよう努力を続けます。

リーダーシップ・キャリアビジョン入門

自分を再発見!リーダーへの第一歩

リーダーシップの鍵は? リーダーシップの3要素を学ぶ中で、リーダーシップが特定の生まれつきの資質によるものではなく、後天的に身につけるものであるという考え方を改めて実感しました。これまで漠然としたイメージしか持っていなかったリーダーシップが、具体的な3要素を通して自分自身の姿を振り返るきっかけとなり、目指すべきリーダー像と現状とのギャップを明確に整理することができました。 不安の根源は何? また、初週を振り返る中で、普段のリーダー経験に伴う漠然とした不安や自信のなさが内面に潜んでいることに気づきました。このネガティブな要素が、自分の可能性を十分に発揮する妨げになっていると感じ、原因となった経験を改めて振り返り、解釈を整理することが必要だと実感しています。 成果の見え方は? 日々の業務では、一緒に仕事を進める仲間とのチェックインや業務終了時の状態共有を通して、一日の成果を感じながら効率的な業務の進行を目指しています。こうしたコミュニケーションの中で、目的や目標の確認と達成状況を確かめ合うことの重要性を再認識しました。 会議の効果は? チームとのミーティングや1on1では、現状の把握から今後の目指すべき状態について話し合い、必要に応じたコーチングによって支援を行っています。また、プロジェクトの進行においては、目的・目標の再確認や進捗、困りごとの整理を通じて、課題解決に向けた具体的な行動を共に模索しています。 自信はどうなる? さらに、リーダーシップに対する自信の有無についての気づきを振り返り、尊敬する人との1on1でその考えを伺うことにより、自身のリーダーシップに対する理解と成長を図る機会を大切にしています。加えて、週次ミーティングなどで業務の目的・目標の確認や進捗、課題について共有し、全員で合意形成を進めていくことにも努めています。

データ・アナリティクス入門

気づきを得た!ABテストでSNSフォロワー倍増作戦

ABテストの学びを深めるには? 問題の原因を探るためのポイントと、適切な解決策を決定するための手法である「ABテスト」について学びました。 まず、問題の原因を探るためのポイントとして、以下の二つが挙げられます。 1. プロセスに分解すること。 2. 解決策を検討する際には、複数の選択肢を洗い出し、その中から根拠をもって絞り込むこと。 ABテストの手法はどう実行する? 次に、ABテストの手法についてです。ABテストでは、できる限り条件を揃えることが重要です(例えば時間帯や曜日)。具体的なステップは次の通りです。 1. 目的を設定する。 2. 改善ポイントの仮説設計を行う(ABテストの立案)。 3. 実行する。 4. 結果の検証と打ち手の決定を行う。 SNSフォロワー増加策の提案 直近の課題として、所属組織の公式SNSアカウントのフォロワー数増加策にABテストを活用したいと考えました。 具体的な解決案は以下の通りです。 - 目的の設定:フォロワー4000(現在2000) - 検証項目:フォロワーの属性、いいね回数、再投稿回数、テキストの文体、メディアの有無 - 仮説:文体が固くとっつきにくいのではないか - 解決策:ABテストを行い、1週間程度、「ですます調」と「だである調」で投稿の文体をテストする この課題解決案を所属部署に提案します。 問題解決の手順は? 最後に、問題解決の4ステップを説明します。 1. What:問題の明確化→同業他社に比べてフォロワー数が増えない 2. Where:問題箇所の特定→投稿への反応が少ない(いいね、再投稿) 3. Why:原因の分析→投稿頻度が少ない?文体が固い? 4. How:解決策の立案→ABテストで文体を変えて投稿してみる 以上、学んだ内容と計画した解決策について共有させていただきます。

データ・アナリティクス入門

データに基づく問題解決法を学んだ充実の時間

分析の基本を理解するには? 講座全体を通して学んだことのポイントは以下の通りです。 まず、分析についてです。分析とは、比較することと同義です。そして、問題解決のプロセスにおいては「What→Where→Why→How」の順序で進めることが重要です。平均値を見る際には、そのばらつきにも注意を払いましょう。対策を決定する際には固定的にせず、柔軟に対応することが求められます。また、生存者バイアスに影響されないように注意し、生存者と非生存者の両方に目を向け、データの分布全体を分析する必要があります。結果を他人にわかりやすく伝えるためには、データのビジュアル化が有効です。 戦略策定で役立つ方法は? 次に、下半期の戦略策定です。クライアントの下半期戦略を作成する際に、講座で学んだ分析のフレームワークを活用することができます。 データをどう活かすか? さらに、分析結果の資料への落とし込みについてです。クライアントの意思決定を支援することを目的として、データの見せ方に工夫を凝らします。 データ分析の効率化を目指すには? データ分析のやり方の向上も重要です。AIなどのツールをうまく活用することで、精度の高い分析を短時間で実施します。必要最低限の情報をもとに素早く答えを出して実行する。このサイクルを多く回すことで、最短で最大の効果を生み出すことが可能です。 効果的なデータ伝達法は? 最後に、データ分析結果の伝え方についてです。対峙する相手は数値分析を本職としていないことが多いので、単なる数値の伝達だけでは不十分です。データを可視化し、クライアントの課題を踏まえたフォーマットに変換します。クライアントが知りたいのはビジネス上のインパクトです。そのため、ビジュアルで見せたり、ビジネス言語で表現して、一目で理解できるようにすることが重要です。

マーケティング入門

魅力満載!ナノ単科体験談のすべて

顧客心理を理解する重要性 顧客心理を理解し、商品をどのように魅せるかを考えることは非常に重要です。同じ商品であっても、ネーミングを工夫するだけで売上が大きく変わることがあります。例えば、「アルミ容器のない冷凍うどん」が売れなかったが、「水のいらない冷凍うどん」と名称を変えたところ、売上が100倍にも増加したことがあります。このように、商品のイメージが顧客の持つイメージや欲求に訴えない限り、売れることは難しいのです。 競合に似てしまう罠を避けるには 商品を差別化しようとすると、競合のヒット商品に似てしまうことがよく起こります。この罠に陥らないためには、常に顧客に注目し、顧客の心理を理解することが重要です。一方、商品開発においては、イノベーションの普及要件という効果的なフレームワークがあります。これは比較優位、適合性、わかりやすさ、試用可能性、可視性の五つの要素から成り立っています。これらの要素を顧客視点で評価し、商品の魅せ方を工夫することが、顧客の心理を掴むために役立ちます。 BPO事業への参入の課題は? 私の部署では、BPO事業への参入という目標があります。商品販売ではなく、自分たちのスキルを提供する形で進んでいます。そのため、私たち自身の魅せ方についても、イノベーションの普及要件に基づいて検討しています。他社人材と比較した際の優位性や、顧客のニーズに応じたサービス提供、分かりやすい料金プランやお試しプランの提供、最先端のデジタル技術の採用を考慮しています。 観察と自己評価で顧客心理を掴む 商品について観察し、売れない理由とその解決策を考えることで、顧客心理を掴む訓練になります。この際、イノベーションの普及要件を照らし合わせ、自分であればお金を払って欲しくなるかを常に考えながら、顧客視点と心理を意識して思考することが重要です。

データ・アナリティクス入門

現状と向き合う、理想への一歩

ありたい姿とギャップは? 今回の学びでは、問題解決プロセスの重要性を改めて実感しました。まず、「ありたい姿」と現状のギャップを明確にすることが、課題の適切な設定につながると感じました。これはデータ分析のみならず、さまざまな業務に応用できる考え方です。 どう課題を分解する? 課題を分解する際には、各要素に分けるためにロジックツリーを活用し、MECEを意識して重複や抜け漏れがないように整理する手法が非常に有効でした。また、問題解決のプロセスをWHAT(何が問題か)、WHERE(どこに問題があるか)、WHY(なぜ問題が生じたのか)、HOW(どのように解決するか)の4つのステップに分けて考える方法は、実践的かつわかりやすいと感じました。 現状と理想はどう? 分析を始める前に現状と理想のギャップを把握することで、無駄な作業を省き、重要なポイントに的を絞った課題設定が可能です。他の人が設定した課題も一度自分で見直す習慣をつけることで、見落としが防げると考えています。 目標はどう捉える? また、自身の目標設定において、ただ数値を追うのではなく「あるべき姿」を明確にすることが、戦略的なアプローチへとつながります。たとえば、ソフトウェア導入時には現状の課題を整理し、導入によって解決すべきポイントを明確にすることで、より合理的な選定ができると実感しました。このスキルを業務全体に活かすことで、より本質的な課題解決が可能になるでしょう。 手法はどう共有? 最後に、今回学んだ問題解決の手法を部内で共有するつもりです。今までのケースバイケースの対応を見直し、データをもとに客観的かつ一般的な対策を検討するアプローチの普及を目指します。ただし、過去に特定の調査で効果が得られなかった経験もあり、状況に応じた柔軟な対応が求められることも実感しています。

クリティカルシンキング入門

データ分析のコツで業務効率アップを実感

数字分析で見える傾向は? 数字をいくつかのパターンでグラフ化し比較すると、傾向や特徴がつかめることがわかりました。知りたい情報に対して、意図的に複数の分析軸が必要であることも理解しました。特に一番の気づきは、一つの分析結果だけを見てすぐに結論を出すのは危険だということです。急ぐあまりに、ついやってしまいがちですので気を付けたいと思います。 分解時の注意ポイントは? また、切り口を考える際のポイントとして、全体を定義したうえでモレなくダブりなく分解していくことが重要だと感じました。意識してチェックしていないと、歪みが出ることに気付けません。 課題の本質をどう見抜く? 自分の業務では、お客様アンケートなどを整理する際の切り口を設定するときに使えると思いました。さらに、原因不明な状態で課題改善を依頼された際にも有効だと感じます。例えば、上司から「この課題はおそらくこの辺に原因があるからこの方向性で解決してほしい」と相談され、現場では「ほんとの原因はそこではないと思う」という意見の乖離があった際、どのように調整すればよいか悩むことがあります。そのようなときに、要素分解を用いて課題の本質を明らかにすることができると思いました。 精度の高い分析へ向けて 現在推進しているサイトのUI改善は、ヒアリングを中心に改善施策を検討していますが、今一度データの分析を掘り下げてみたいと思いました。その際に以下の点を実施しようと思います。 - 切り口を複数用意するために、分析に必要なデータを多く収集する - 手を動かして分解する - どんな切り口が分析に役立ちそうか関係者にもヒアリングしてみる - モレなく、ダブりなくの視点で問題ないか、分析の切り口を周囲の人と意見を聞き確認してみる 以上の点を意識して、より精度の高い分析を行いたいと思います。

クリティカルシンキング入門

イシューで会議をもっと成果にする方法

最初の問いは何? 今何を考えるべきか、最初に答えを出すべき問い(イシュー)を明確にしてから考えることが大切です。イシューは具体的な問いの形にし、共有することで同じ問題について皆で考えることができます。問いが間違っていると、いくら考えても良い案にはなりません。考えている最中や話している最中にも、適宜イシューを思い出し意識し続けるべきです。 会議で何を伝える? 業務の進捗を共有するための会議や、業務で何か動いてもらうための会議、社内で試験的に進めているアイデアソン、今後の業務計画の作成などの場面で、イシューの概念を活用できます。複数人による意思決定の場や、一人で次に何をすべきか考える時にも役立つでしょう。 会議の目的は? 会議を行う際には、まず会議の目的を明確にし、その日のテーマや出すべき答えをしっかり共有してから開始します。会議の途中でも、適宜イシューを振り返る時間を設けることが大切です。試験的に開始されたアイデアソンに参加する際も、何のために実施するのか、何を考えるべきなのか、ゴールはどこかをしっかり共有してから始めるよう、関係者としっかりコミュニケーションをとりたいです。 なぜ新規事業か? 新規事業提案のために、課題とその解決方法を考える時には、まず「なぜ新規事業を提案するのか」という点を考えるべきだと思いました。何となく考え始めるのではなく、活動の目的をしっかり意識することから始めたいと思います。提案が通った際も、前進する際には初心を忘れず、イシューを意識し続けます。 解決策はどう? 課題解決方法を考える時には、課題をしっかり分解し、複数の視点から捉え、対応策を考えたいです。チームで進めることになる場合は、同じ目標を持って進むためにも、課題や向かうべき方向をしっかりと共有することが重要です。

「課題 × 解決」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right