データ・アナリティクス入門

多角的視点で挑む学びの挑戦

プロセス分解って何? プロセスを分解するという観点を学びました。3Cや4Pのフレームワークを用いて、どの切り口で分析するかまでは考えることができたものの、その視点から仮説を立てる際に、設問の誘導がなければ行き詰まる可能性があると感じました。最終的には、4Pでプロモーション方法に着目し、3Cで顧客視点から行動パターンやプロセスを考えるという方法を組み合わせるアプローチを理解しました。 学びは販促にどう活かす? マーケティングの面では、従来の主要な事業である顧客設計品の生産・販売に加え、近年では新商品の市場投入が進んでいるため、学んだ考え方を販促活動に活用できると感じました。どの業界のどの顧客にどのようにアプローチし、望ましい結果を得るかを考える際に、今回の手法が大いに役立つと思います。 計画検証はどうすべき? また、投資検討の面でも、現状は確定した案件に基づいて投資判断がなされていますが、今後は未確定案件に対する投資検討にも学んだ手法を生かし、効果やリスクの検証を行っていけると考えています。さらに、担当者との定期的な打ち合わせで共有された活動計画について、計画が効果的に進んでいるか、もし計画通りに進んでいなければその原因や改善策を検討する際にも、今回学んだアプローチを活用していきたいと思います。

クリティカルシンキング入門

思考の癖を乗り越えて成長する方法

思考のクセ気付いてる? 人にはそれぞれ独自の「思考のクセ」があると言われます。私自身も、会社でその点を指摘されたことがあり、非常に印象に残っています。この経験を通じて、誰しもが持つ思考のクセを意識しながら、他者に分かりやすく伝える必要があると改めて感じました。特に考え続けることの重要性が指摘され、私は早く仕事を進めることを優先するあまり、考えることを疎かにしていたのではないかと反省しました。 企画説明どう進める? 私の役割は、企画を検討し、上司に説明して納得を得た上で承認を得るということです。その際、自分の思考のクセに基づいたアイデアだけでなく、他の視点も包含して練り上げた結果を論理的に説明することで、企画から承認までのプロセスを迅速化できると信じています。 企画の目的は明確? まず、進める企画の目的を徹底的に考え、明確化します。そして、すぐにアイデアを深掘りしてしまう自分の癖を意識します。その後、MECE(Mutually Exclusive, Collectively Exhaustive)などのフレームワークを活用し、問題の所在や可能な対策を短時間で探る作業を繰り返します。このようにして企画の内容や資料を固め、論理的に説明して納得を得て承認されるというプロセスを実行します。

戦略思考入門

差別化戦略で営業力を高める方法

戦略軸とVRIOはどうする? 差別化戦略を考える際の集中、差別化、コストリーダーシップといった軸について、以前はあまり意識していませんでした。今後はこれらの軸をしっかりと意識し、無駄のないよう整理しながら戦略を進めていきたいと思っています。また、VRIO分析では、経済価値、希少性、模倣困難性、優位性の観点から施策やサービスの妥当性を精査するということを初めて知り、今後の検討に際してこの軸を用いてしっかりと分析を行っていきたいと考えています。 差別化戦略はどう進める? 現在の業務においては差別化戦略を活用する機会が少ないと感じていますが、自分自身の立ち位置を社内で高めるには、特定の分野に集中して取り組むことが役立つのではないかと考えました。また、営業向けの研修を多く行っている中で、クライアント向けに提案や戦略を考える際、このVRIOフレームワークを活用することで、より価値の高い提案が可能になると感じています。ぜひ試してみたいと思います。 商談研修はどう見直す? 現在、商談のための営業研修プログラムの見直しを進めています。商談での提案内容を考える際に、クライアントに対してどの施策がVRIOフレームで見て価値があるものかをきちんと検証できるようなステップを組み入れていきたいと考えています。

データ・アナリティクス入門

合宿で描く未来のマーケ戦略

方向性はどう決める? 来年度に向けた部としての1年間の方向性とTODOを検討する合宿で、今回学んだ内容を活かすことができると感じました。合宿では、現状できていることとできていないこと、そして今後必要なソリューションについて話し合いました。具体的には、今後重要になると予想される広告指標について、各ソリューションごとの導入実績を比較し、2024年の傾向を把握することが求められると認識しました。また、現状のホットなマーケティングトピックから、今後伸びるであろうKPIを仮定し、その上でどのようなソリューションを開発すべきかを検討しました。 情報はどう集める? さらに、分析においては、情報やデータの収集方法が非常に重要であると感じました。普段あまり活用していなかった社内のポータルや事例集なども積極的に利用し、必要な情報が何か、足りない情報はないかを意識しながら、学んだプロセスに沿って分析に取り組んでいくつもりです。 分析の進め方は? また、データ分析の基本として、目的を明確にし、仮説思考でアプローチすること、比較を重視すること、そしてwhat→where→why→howというプロセスで考えることの重要性を再確認しました。これらの考え方を実践することで、より具体的な分析結果が得られると実感しています。

データ・アナリティクス入門

データが照らす学びの軌跡

データ比較の意味は? データの比較を通して、その意味合いを見出す手法として、数字に集約する方法とビジュアル化する方法の2つのアプローチがあることを学びました。 代表値の選び方は? 数字に集約する手法では、まず代表値に着目します。代表値としては、単純平均、加重平均、幾何平均、さらには中央値が挙げられます。また、データのばらつきを評価するためには標準偏差を利用するのが有用です。どの手法を採用するかは、単に数値を並べるのではなく、各数値が持つ意味合いを十分に考慮した上で、目的に見合った適切な評価方法を選択することが重要です。 評価手法は何だろ? 成長率や進捗率の評価では、場合によっては幾何平均が適していることもあります。ただし、実際の業務においては、単純平均や標準偏差による評価が一般的に用いられるケースが多いです。評価の目的やデータの意味合いによっては、中央値や幾何平均も選択肢に入れて、適切な評価手法を考慮する必要があります。 グラフ選びはどうする? また、データのビジュアル化にあたっても、まずその目的を明確にし、適したグラフなどの表現方法を検討することが大切です。目的に合わせたデータの加工や表示の手法を選ぶことで、情報をより具体的かつ分かりやすく伝えることができると実感しました。

クリティカルシンキング入門

問いが導く自己成長ストーリー

問いの重要性は? 「問い」から始めるという視点が、今回の学びの中で特に印象に残りました。まず、常に「今何を考えているのか」を自分自身に問いかけることで、単に身近な情報に頼るのではなく、目的や目標を明確にしながら考える重要性を再認識しました。 自己評価の見方は? また、思考のプロセスにおいては、自分の考えを客観的に評価する「もう一人の自分」を育てることが大切だと感じました。具体と抽象の動きを意識的に行うことで、より広い視点からアイディアを整理・展開し、最終的に論理的な結論に導くための自己チェックが可能になります。 実践から何を学ぶ? 具体例としては、week1で実践した「自分の思考をチェックするもう一人の自分を育てる」と「具体と抽象のキャッチボール」を通じて、発想を広げる効果を実感しました。また、week6に学んだ「今何を考えているのかを自問する」手法は、常に問いを軸に考える習慣の大切さを改めて感じさせるものでした。 議論はどう進む? 普段の議論や施策の検討においても、まずは明確な問いを立て、その問いに沿って具体的なアイディアと抽象的な概念を行き来させながら自分自身の考えをチェックすることは、よりクリエイティブで実効性のある結論にたどり着くための有効な方法だと感じます。

クリティカルシンキング入門

データ分析の神髄を学ぶ: MECE活用法

情報をどう加工する? 情報を分解して考える際のポイントについて学びました。まず、情報を加工して新たなデータが得られないかを検討します。そして、情報の分解には複数の仮説を立て、一度分けた情報だけで判断せず、別の視点から再度分析を試みます。数字を見るだけではなく、グラフ化することで認識しづらかった数字の特徴が浮き彫りになることがあります。 分析時のMECEの重要性とは? 情報を分解するときには、まず全体を定義づけし、MECE(Mutually Exclusive, Collectively Exhaustive)を意識した切り口を見つけます。これにより、重複や漏れがない分析が可能になります。アナリティクス分析時にも、見たままのデータに頼らず、別の視点を意識して分析することが重要です。 過去データの活用法を知ろう コンテンツ制作の企画段階では、MECEを意識し、どの顧客に対してアプローチすべきかを判断します。次の施策を始める前には過去のデータを集計し、数値をさまざまな方向から分解して、過去の傾向を徹底分析します。チームに情報を共有する際には、グラフを用いて視覚的に分かりやすく説明する工夫が求められます。このように、決めつけを避け、別の分解方法が無いかを考えながら分析を進めることが肝要です。

データ・アナリティクス入門

目的意識が導く新たな一歩

理解不足は何故? 「どこに問題があるのかを4つの視点で考える方法」について、これまでの学習テーマに比べしっくりこなかった部分もあり、自分の理解力不足を痛感しました。また、マーケティングの学習中に出てくる専門用語が多く登場したため、改めて具体的な事例に照らし合わせながら学ぶ必要性を感じました。 A/Bテストは何が肝心? CRMのメール発信を担当している経験から、これまでA/Bテストに取り組んできたものの、手法そのものを知っている・実施したというだけではなく、テストを行う前の目的を明確にし、AとBそれぞれの「誰が、何を、なぜ」という点をしっかり考慮しないと効果が半減してしまうと実感しました。 全体目的は明確? プロモーションなどの一部の発信手法に留まらず、事業全体の目的を明文化し、グループ内で共有することの重要性を改めて感じました。分析、課題、仮説といった学習内容からは一歩離れるものの、問題の原因や仮説を検討する前に、まず全体の目的や前提となる問題があることに気づかされました。 目的は全員一致? また、各自が担当プロジェクトの目的を意識する体制において、それぞれの目的が本当に矛盾なく共有されているのか、今更ながら疑問を感じるとともに、再確認する必要性を強く認識しました。

クリティカルシンキング入門

図で読み解くデータの真実

視覚化のコツは何? 今回の講座を通じて、視覚的に分かりやすい図表の作成や、元データを複数の視点で分解してグラフ化する手法を学びました。情報を可視化することで、データの本質に迫ることができ、分析の精度が高まる点が非常に印象的でした。 分解視点はどう活かす? また、データの分解方法として、When(時間)、WHO(人)、HOW(手段)の視点を活用し、仮説を立てながらデータを読み解くアプローチは、理論と実践をうまく結びつけると感じました。こうした手法により、伝えたい内容を論理的に整理し、より明確に説明できるようになると思います。 情報分解の秘訣は? さらに、MECEの考え方を用いて情報を漏れなく、ダブりなく分解する技術についても学びました。層別分解、変数分解、プロセス分解といった具体的な切り口を通して、第三者にも分析の背景や意図を的確に伝える方法を身につけることができました。 課題抽出はどう確認? 最後に、アンケート結果や経費使用の分析を通じて、課題の抽出と適正な施策検討につなげる事例は、実務における分析の重要性を改めて認識させられる内容でした。自分自身でデータを作成する際や、他者のデータを検討する際に、適切な分解と背景の説明が説得力を高めるポイントであると感じました。

データ・アナリティクス入門

データから学んだストーリー分析の重要性

問題解決の4ステップは? 問題解決には、what(何)、where(どこ)、why(なぜ)、how(どのように)の4ステップがあります。経験や勘に頼らず、まずは事象をMECE(Mutually Exclusive, Collectively Exhaustive)に分解することが根本的な解決につながります。 分析のストーリーは重要? データを目の前にして即座にグラフ化したり、平均値や割合を出すのではなく、「なぜそうなったのか?」というストーリーを持って分析することが重要です。 データ取得の企画段階とは? 今後進行する実証実験の検証項目を明確にするため、企画段階からデータ取得方法を組み込む必要があります。また、マーケティングインテリジェンスのグループに異動するにあたり、ネット上のデータを鵜呑みにせず、なぜそうなっているのかの背景をシステマチックに考えることが大事だと感じました。 実証実験のゴールは? 現段階で検証項目の洗い出しは終わっているため、最終的な実証実験のゴールと、理想的なデータを意識しながら、今月中に取得方法を検討します。また、市場調査ではデータだけでなく、なぜそのようなデータが集まったのかについて、社会動向をチームメンバーとディスカッションする機会を設けます。

戦略思考入門

優先順位で事業成功を掴む方法

判断基準をどう考える? 戦略的な選択を行うためには、優先順位づけをする際の判断基準を明確にすることが重要です。情報が不足している場合は、仮説思考を活用し、複数の仮定を設定して検討することが求められます。判断基準を考える際は、複数の視点から多角的に検討することが効果的です。優先順位をつけるということは、優先対象を決めるだけでなく、優先しないものを切り捨てる選択も含まれます。 国際事業の戦略は? 現在、私は4カ国で事業開発に携わっていますが、すべての国においてコミットしており、その結果、市場での優位性や取り組みの実現可能性が低い国にも一定のリソースを割いてしまっていることが課題となっています。このような状況では、捨てる選択をすることが必要とされています。 合理的選択の基準は? 選択を合理的に行うために、以下の判断基準を設け、客観的に事業開発に取り組む考えです。それは、(1)市場において当社の優位性があるか、(2)短期間で成果達成が可能か、(3)取り組みに十分なリソースを割けるか、(4)本社の戦略に合致しているか、という基準です。12月までにこれらの基準に基づき、取り組む事業を絞り込み、各事業のタイムラインやチーム体制を明確にして関係者からの合意を得ることを目指します。

データ・アナリティクス入門

数字の背後に輝く発見

統計でどう比較する? 分析は、単なる数値の羅列からその違いを見出すだけではなく、統計的な手法を用いて比較することが大切です。たとえば、平均は代表的な統計手法ですが、平均値だけではデータの全体像を正確に把握できない場合があります。そこで、最大値、最小値、中央値、最頻値などの複数の指標を合わせて用いることで、より明確な違いが見えてきます。また、数値だけでは分かりにくい部分はグラフなどのビジュアルツールを活用することで、視覚的に比較しやすくなります。 仮説は信頼できる? 現状のデータ分析では、まず仮説を立て、その仮説に基づいた統計的手法やグラフを用いて分かりやすい資料作成に努めています。しかし、仮説が常に正しいとは限らないため、偏ることなく中立的な立場でデータを検証し、仮説に反する結果があれば素直に認めて正確に分析することが求められます。 方法はどう変える? また、現行の分析手法や視点を根本から見直すことで、データの収集方法や指標の選定、解釈の仕方まで再検討し、実態に即した新たな気づきを得ることが重要です。その上で、得られた新たな視点をもとに具体的な改善策や施策を立案し、現場での運用につなげることで、分析結果を実効的に活用するサイクルを確立していきたいと考えています。

「検討 × 方法」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right