デザイン思考入門

生成AIで顧客共感の新境地

どうしてペルソナが鍵? 生成AIのビジネス活用支援の立場から、生成AIの利用方法について考えました。自ら生成AIをどのように活用するかを検討し、実際の運用で示された課題を把握することは可能です。しかし、利用するお客様ごとに使用シーンや前提知識、目的が異なるため、彼らに共感し課題を正しく理解するには、ペルソナをしっかり定義し、その前提条件や目的、状況を想像して整理する必要があります。 顧客役割シミュレーションは? また、生成AIに顧客の役割を模倣してシミュレーションしてもらう手法も有効だと考えます。ペルソナで定義したユーザーとして課題を提示してもらうことで、要件定義のプロセスに新たな視点を加えることができるため、実践的な検討に大変役立ちました。 利用後の効果は何? 実際に利用してみると、生成AIからユーザー役として現実に即した質問が提起され、単なる想像にとどまらない網羅的な事前検討ができることが確認されました。従来、ユーザーを実際に巻き込む場合、コストがかかるという課題がありましたが、生成AIを用いることで低コストで実務に近いシミュレーションが可能となり、非常に参考になりました。 今後の展望はどう? 今後は、生成AIを活用してより具体的なユーザー視点からの課題提起やシミュレーションを実践し、顧客との共感を深める戦略に活かしていきたいと考えています。さらに、生成AIを使うことでペルソナの理解がどのように進むか、またそのシミュレーション結果をどのようにビジネス戦略に反映させるかについても、今後の課題として具体的に検討していく所存です。

アカウンティング入門

B/Sと減価償却で学ぶ経営の真髄

B/Sの見方はどう学ぶ? B/S(バランスシート)の見方について、全体像を把握することの重要性を学びました。具体的には、流動資産、固定資産、流動負債、固定負債、純資産の5つの項目の大きさを確認することが必要です。これにより、資金が有効に活用されているか、何に資金が多く使われているかをチェックし、売上成長に見合った適切かつ効率的な事業への投資が行われているかを確認できます。また、倒産の危険性がないかを確認するために負債についても分析が必要です。特に、借入が過剰でないかや支払い能力については、流動資産と固定資産に焦点をあてて検討することが大切です。 減価償却とは何か? 減価償却についても学びました。これは、固定資産の取得にかかる支出をその資産の使用期間にわたって計上する手続きで、価値が下がった分を費用としてB/Sに反映させます。減価償却の方法には定額法と定率法があります。 賃借対照表から何が見える? ある賃借対照表からは、流動資産、固定資産、流動負債が存在するものの、固定負債がないこと(無借金経営)を通じて経営状況を推測することができました。自社のB/Sを確認することで、これらの項目の大きさを把握し、今後の予測を立てることが可能になります。 また、原価償却について、自社での固定資産の棚卸を行った際、そのリストを基にして、B/Sにどのように反映されているのかを確認しました。自社のB/Sを確認する際には、資金が有効に活用されているか、売上成長に見合った投資がなされているか、流動負債と固定負債の割合やそれに関するリスクに注意を払います。

デザイン思考入門

共感が創る企業支援の未来

共感の大切さは? 企業支援を主な業務とする中で、最も効果的なのは、デザイン・設計の段階で「共感→課題定義→発想→試作→テスト」という流れを取り入れることだと感じています。特に「共感」のステップに重点を置くことで、ユーザーの深層ニーズをより正確に引き出すことが可能になります。このため、課題定義に入る前に必ず共感の把握を行うプロセスを取り入れるべきです。 具体策はどう? また、共感の手法や具体例については以下の点を改めて検討しています。具体的には、共感のプロセスでどのような方法を用いて深層ニーズを引き出しているのか、そしてそのニーズを把握した後、どのような形で課題定義に活かすのかという問いに対して、実践に即したアプローチを模索する必要があります。 実践の工夫は? 実践面では、十分にそのままの形で実施できていないと感じることもありますが、振り返りの中で、ユーザーの情緒的な側面に配慮しながら課題定義を行うことで、内部での納得度が高まり、最終的な成果にも良い影響を与えると実感しています。これまでも一部では提案を行ってきましたが、さらなる観察やヒアリングを通じて、より具体的な対策を講じるべきだと考えています。 未来へどう進む? 今後は、企業支援の流れにおける「共感」から始まる一連のプロセスを、より具体的かつ実践的に展開していきたいと考えています。さらに、マーケティングのみならず、経営や企業変革全体を視野に入れた支援を実施するため、従来の課題解決から課題定義へのシフトを図り、自身の支援サービスのあり方についても再検討する予定です。

クリティカルシンキング入門

ビジネスの課題解決力が驚くほど向上した方法

分解手順を学ぶ意義は? 分解の手順について学んだことで、ビジネスモデルの検討やプレゼン資料の作成が大いに改善されました。 効果的なビジネスモデル検討法 まず、ビジネスモデルの検討では、これまでは漠然とサプライチェーンやバリューチェーンの軸で考えていましたが、層別分解を導入することでより具体的に検討できるようになりました。この方法では全体を定義し、それをMECEに分解して視覚的に図示することで、漏れや重複が無いか確認します。具体的には、層別分解、変数分解、プロセス分解という手法を用い、それぞれの分解結果を俯瞰することで新たな発見が得られることが多々ありました。 プレゼン資料改善の鍵は? 次に、プレゼン資料の作成についてです。全体像を定義し、それを具体的な内容に落とし込む際に、MECEの考え方をしっかりと取り入れました。その結果、伝えるべきポイントをより明確に整理することができ、聞き手にとって理解しやすいプレゼンテーションになったと感じています。 日常での分解思考の鍛え方 また、日常の中でも分解思考のクセをつけるために、通勤中に目に入る店を様々な観点で分解する練習を行っています。業態やターゲット層、営業時間、品揃えの重点など、仕事とは関係ない対象で練習することで、分解するスキルが向上しました。 分解がビジネスに与える影響とは? 全体像を言語化し、その後視覚的に分解項目を視える化する過程を実践することで、物事を多角的に捉える力が養われました。結果として、ビジネスにおける課題解決の精度が向上したと実感しています。

データ・アナリティクス入門

問題解決力を育むプロセスの魅力

原因の見極めは? 問題を解決する方法の一つとして、プロセスを分解して原因を明らかにするアプローチがあります。また、解決策を検討する際には、複数の選択肢を洗い出し、根拠に基づいて選定することが大切です。この際には、判断基準の重要度に基づき重み付けを行い、解決策を評価して選択します。 データで何が分かる? データを分析しながら問題解決の精度を高めるためには、ステップを踏んで行う方法や仮説を試してデータを収集し、改善につなげる方法があります。これらのアプローチを組み合わせることで、データ分析をより高度に行うことが可能です。 業務の見直しは? 現在、マーケティング関連の業務をしていなくても、特定の目標を達成するために、行動や業務フローを時系列や工程ごとに分解し、問題点やボトルネックを洗い出すことができます。これらの問題が実際にボトルネックとなっているかは、日々の業務を通じて確認、検証、改善を重ねることが必要です。このプロセスを通じて、実際に成果に結びつく行動を特定することが重要です。データ分析が可能となるよう、数値化された目標や行動(KPI)が設定されていることが重要な前提です。 残業改善のヒントは? 例えば、チームが抱える課題として残業時間の多さがあるとします。この場合、目標を「各スタッフの残業時間を月10時間以内に抑える」と設定し、各スタッフの業務工程を洗い出し、それぞれの業務にどれくらいの時間がかかっているかを分析します。そこから、効率化またはアウトソーシング可能な箇所を特定し、実際に実践することが望ましいです。

データ・アナリティクス入門

仮説で切り拓く成長への道

フレームワーク何故有効? 課題に取り組む中で、仮説作成のためのフレームワークが非常に有用だと実感しました。普段は、「〜なんじゃないかな」「このデータだとこんな感じかな?」と何気なく仮説を立てることもありますが、フレームワークを用いることで、考えるべき側面を網羅的に整理でき、より多くの仮説を効率よく導き出せると感じました。もちろん、一般的な枠組み(例:3Cや4P)以外の見方が必要な場合もあり、その都度、自分で検討することが大切だと再認識しました。 過去の仮説はどうだった? 過去の業務では、なんとなく仮説を立てたり、仮説を持たずに作業を進めたりすることがあったと感じています。そのため、今後は以下の点を意識して取り組んでいきたいと思います。 ・常にフレームワークを利用して仮説を作り出すように心がける。 ・過去に読んだマーケティングの書籍などを再読し、その知見を実際に活用する。 ・仕事だけでなく、日常生活においても仮説を立て、検証するプロセスを積極的に取り入れる。 検証プロセスは有効? また、データを単に集めたりビジュアル化するだけでなく、意図的に仮説を立て検証するプロセスを業務に取り入れることで、より論理的なアプローチができると考えています。今後、講義で学んだ具体的な方法をもとに、自主学習を進めながら、疑問点や気になる点を解消していきたいと思います。 新生活どう迎える? なお、来週は新しい仕事に就くための引っ越し作業が重なり、少し慌ただしくなりそうですが、引き続き学習に力を入れていく所存です。

データ・アナリティクス入門

面倒も味方に!工程分解の力

プロセス分解の意義は? 他の研修でプロセスマネジメントを学んだとき、結果管理だけでは検証が十分に行えず、属人化や再現性の低下が生じることを痛感しました。そのため、プロセスを細かく分解し、深掘りすることで問題点を明らかにし、打ち手の検討もしやすくなると実感しています。一方、実際の現場ではプロセスの分解は意外と難しく、面倒だというバイアスもあって浸透しにくい状況もあると感じます。 見直しの方法は? また、プロセスの見直しには、目的の設定と仮説の立案を同時に行うことが重要です。前提の議論が不十分だと、プロセスを詳細に把握する意義も薄れ、問題抽出やプロセス設計が十分に進まなくなってしまいます。 ガントチャート活用は? 仕事においてマネジメントの役割を担う中で、プロジェクト開始時にガントチャートとプロセスの分解を行うようにしています。これにより、進捗状況が可視化され、遅れや抜け漏れの予防につながり、会話の目線も統一されやすくなります。 ABテストの課題は? さらに、ABテストを実施する際には、条件の検討が十分でない場合、Aを終わらせた後にBに着手する傾向が見受けられます。条件の整備が難しいため、目的と現状の把握を明確にし、ギャップ分析で仮説や課題を複数用意、優先順位をつけた上で詳細なプロセス分解を行うことが重要だと考えています。 効果的な評価方法は? 最終的には、共通の評価基準を作るとともに、アクションプランと期限を設定することで、遅れや抜け漏れを防ぎ、目線を合わせたプロジェクト管理が可能になると実感しています。

デザイン思考入門

仮説で解く!みんなの業務課題

なぜ業務量に差が生じた? 現在の業務は減少せず、同じ部署内で担当する業務量に大きな差があるという課題を感じています。この状況について、なぜそのような事態になっているのかを定性分析を用いて仮説を立て、解決に向かわせる方法を考えました。インタビューなどを通じ、単なる業務量だけでなく、その背後にある問題点を明らかにする必要があると考えています。 アンケートから何が分かる? 今回の演習で気づいたのは、アンケートの結果から、経験や年代にかかわらず共通の課題が存在することが分かった点です。この結果は、データをコーディングすることで抽出されたものです。しかし、実際に対処するデータは今回のものよりも複雑で量も多くなるため、分析の難易度は大幅に上がると感じました。また、課題設定において、単に現状の課題を把握するだけでなく、その課題があることによってユーザーがどのような回避行動をとるのかという視点を加えるという新たな発想も得られました。回避行動も一つの課題として捉え、解決策を検討することが求められると学びました。 定性分析で何が見えた? さらに、分析手法として定量分析と定性分析が存在し、特に仮説の構築が重要であることを再認識しました。定性分析は仮説構築に大いに役立つという新たな気づきも得られました。分析結果から浮かび上がった問題について、もし解決が進まなかった場合の条件を設定し、さらに課題を掘り下げる手法も有効であると感じました。なお、解決策を前提にして課題を定義しないという点についても、常に意識して取り組む必要があると理解しました。

リーダーシップ・キャリアビジョン入門

学びから導く理想のリーダー像

行動の重要性とは? リーダーシップは行動なくして発揮されません。行動は能力と意識の掛け算で成り立っていると感じています。この考えを基に、自分がどこに偏っているのか振り返り、明日からの行動に繋げていきたいと思います。自らの理想とするリーダー像を再度イメージしつつ、自分の性格を考慮した上で、自身なりのリーダー像を作り上げることが重要です。また、他のメンバーの考えからも学び、必要なものや不足しているものを積極的に取り入れていきたいです。 新たなリーダーシップ発揮法 現在進行中のプロジェクトでは、過去のやり方にとらわれず、新たな企画を検討しています。その中で自分が理想とするリーダー像を意識し、行動に落とし込みたいです。新しい企画には反対意見が出ることもありますが、受け入れる部分と堅持する部分のバランスを考えつつ、リーダーシップを発揮したいと思います。さらに、部下同士のコミュニケーションにおけるロスの状況を打開するため、自分の行動で変化をもたらす努力をしていきます。 メンバーの意見はどう尊重する? プロジェクトを進めるにあたって、拘りたい点とメンバーの意見を取り入れたい点を明確にし、リーダーとしての姿勢を保持しながら、強引になりすぎずにメンバーのモチベーションを維持する方法を模索していきたいです。部下間のコミュニケーションについては、適切なタイミングで自分の意見を伝えることや、メンバーの意見を聞いて尊重することを実践し、メンバーのモチベーションがどのように変化するかを観察し、サポートしていきたいと考えています。

アカウンティング入門

提供価値に気付く会計分析

会計データの意味は何? 会計データが単なる数字や割合ではなく、企業が顧客に提供する価値と密接に結びついた「意味ある情報」として捉えられる点が印象に残りました。企業の提供価値やビジネスモデルに即してP/L・B/Sを分析することで、従来は抽象的だった数字に具体的な背景が読み取れるようになったと感じています。また、異なる業界の事例を比較検討することで、業界特性やビジネスモデルがより明確に理解できるという新たな視点も得られました。 比較で何を発見する? 受講直後は、競合企業との比較に重点を置いていましたが、異業種との対比により新たな発見があることに気付かされました。もともと自社は通信制の教育事業を中心に展開しているため、同業他社との比較が主でしたが、コンテンツ配信の観点から他業界の会計データを参照することで、売上原価の削減など別の改善策を検討する余地が見えてきました。今後は「提供価値を意識した会計データの読み解き」と「比較・対比を通じた気付き」を大切にしていきたいと考えています。 異業種の決算書は何を示す? また、新規事業立案にあたっては、競合のみならず異業種の決算書も調査し、従来の儲け方以外の可能性や資金の使い方、調達方法について幅広い視点で検討していきます。具体的には、5月末までに決算書が提出される企業の事例を調べ、6月中に自社との比較分析を行う予定です。決算書全体を細部まで追いかけるのではなく、主要な利益項目など大きな数字に注目し、グラフなどを活用して全体の傾向を把握した上で詳細な分析に進むことを意識していきます。

クリティカルシンキング入門

課題を見極め、戦略を描く

なぜ分析が必要? 今週の学習では、ケースを通じて課題を特定し、解決策を導くための分析の流れや、グラフによる可視化の方法について考えることができました。特に、「課題解決に向けて、どの分析対象を選び、どのように可視化するか」を具体的に把握し、言語化・整理する難しさを強く実感しました。一見シンプルに見える分析やグラフ作成にも、明確な目的と意図が求められるため、「なぜそのデータを選んだのか」「なぜその形式で示したのか」を一つひとつ理由づけることが、説得力のある資料作成や意思決定支援へ繋がると考えています。 実践はどのように? これまで業務課題を解決する際に、「イシューの特定と分解」や「課題ごとの解決策の立案」、そして実現可能かつ効果的な施策の選定と実行というプロセスに十分に向き合えていなかったと感じています。現在、戦略立案の担当として自社の施策の検討・実行が求められる中、まずは適切なイシューを見極め、正確に分解した上で、実行可能性と効果を見据えた施策に落とし込む一連の流れを、今後より意識的に実践していきたいと思います。 思考力をどう鍛える? 今回学んだクリティカルシンキングの基礎を業務の中で意識的に取り入れることが、学びを深めスキルの定着に不可欠であると実感しました。入門編として体系的に学ぶ機会を得たことで、今後は書籍なども活用しながら継続的な学習に取り組み、クリティカルシンキングの実践力をさらに高めていきたいと考えています。業務においてもこの思考法を取り入れ、より良い意思決定や戦略立案に貢献できるよう努めていきます。

データ・アナリティクス入門

仮説×多角視点で見つけた新発見

仮説の組み立て方は? 仮説を立てる際には、【What/Where/Why/How】の各視点を用いると整理しやすくなります。具体的には、①問題は何か、②問題が発生している場所、③なぜ発生しているのか、④その解決策というステップで進めます。もし手掛かりが得られない場合は、【3C】や【4P】といったフレームワークも有効です。大切なのは、仮説の正確性よりも複数の異なる視点からの検証ができるかどうかであり、全体を満遍なくカバーする形で複数の仮説を立てることが望ましいです。その上で、データ収集や検証を行い、どこに問題が存在するのか、そして適切な解決策は何かを探ります。 お客様行動の理由は? 顧客の行動分析において、この方法が非常に役立ちそうだと感じました。普段からお客様の行動についてはある程度の傾向を把握しているものの、なぜそのような行動に至るのかという原因まで深堀りできていなかったため、今回の仮説設定と検証を通じて明らかにしたいと思います。また、これまでなかった【3C】や【4P】の視点を取り入れることで新たな気づきも得られると期待しています。 データ収集の方法は? まずは、自社が所有しているデータを収集するところから始める必要があります。現状のデータだけでは不足している可能性があるため、必要なデータをどのように取得するかを検討し、取得にかかる費用と解決したい問題とのバランスも考慮したいと考えています。加えて、仮説を立てることでスタッフ全員が同じ視点に立ち、各自の気づきを共有できる環境を作りたいと思います。

「検討 × 方法」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right