戦略思考入門

ビジネスの本質を掘り下げ、実践する方法

体系的に理解できた? ビジネスの場では、単なる感覚に頼らずに、仕組みを体系的に理解し、その本質を見抜くことが重要です。このための考え方の要諦を学ぶことができました。 選択はなぜ必要? 特に重要だと感じた点は、選択の必要性です。顧客にとってのメリットを考えると、一部を捨てる選択も重要です。また、差別化についても学びました。差別化とは何か具体的な違いを顧客に訴え、選んでもらうことだと理解しました。さらに、規模の経済性が競争優位性に繋がるかどうかもしっかり検討する必要があります。特に、安易な多角化には注意が必要です。 現状把握できてる? 私の部署では、業務の効率化と高品質化が命題です。ただなんとなく業務を進めるのではなく、明確にゴールを設定し、現状を把握する「足元分析」を行い、常に自分の道程を自問する姿勢を持ち続けたいと思います。 行動はどう活かす? 学んだことを実際の行動に活かすために、「手を動かす」こととして、学んだフレームワークを手近な事例に当てはめて考えていきたいです。「口を動かす」こととしては、仲間と意見を共有し、発信することで知識を深めます。そして、「頭を動かす」こととしては、捨てるべきものや、そこに至った思考の過程を再確認し、自分の業務に活かせるかを考え続けます。 振り返りは継続する? これらの活動は講座が始まってから取り組んでいるもので、今後も続けていきます。具体的には、毎週何かしらのフレームワーク、例えばSWOT分析やPESTEL分析を学び、実際のケースで練習します。さらに、定期的に振り返りを行い、ノートに「今週学んだこと」や「改善すべき点」を記録し続けます。

データ・アナリティクス入門

A/Bテストでお客様の心を掴む方法

原因をどう特定する? 問題の原因を探る手法として、まずプロセスを分解してどこに問題があるのかを特定し、仮説を立てることが有効です。そして、解決策を検討する際には、複数の選択肢を洗い出し、その判断基準を考えた上で重要度に基づいて順位づけを行い、取り組むべき選択肢を絞り込む必要があります。 A/Bテストの意義は? A/Bテストを活用することで、複数の施策の効果を実際に試し、反応を見て評価することができます。この手法では、仮説を持ち、検証項目をしっかりと設定することが重要です。さらに、1つの要素ずつを検証し、テストのパターンは同時期、かつ同期間で行います。期間が異なると、テストしたい要素以外の環境要因が影響してしまう場合があるためです。 広告テストは効果的? 具体的な例として、YouTubeの広告動画作成時には、お客様のお悩みに関連づけて訴求ポイントを異なるパターンで作成し、A/Bテストを行います。どちらの広告が高いクリック率やコンバージョン率を示すかを確認することで、よりニーズの高い訴求内容を把握できます。同様に、LINE配信ではイベントのキャッチコピーを複数作成し、クリック率や開封率から最も効果的なコピーを見つけ出します。 工数を減らす方法は? なるべく工数をかけずに数パターンのクリエイティブを作成したいと考えています。A/Bテストはいつも話題に上がり、実施したいと思っているのですが、なかなか時間がなく一つのパターンしか作成できないことが多いのが現状です。手間を減らす方法を模索しながら、A/Bテストを実施することで、お客様のニーズを深く理解し、問題の原因を明確にしていきたいと考えています。

クリティカルシンキング入門

問いを持続し成果へ導く道のり

問いの大切さは? 「問いから始める」という考え方が非常に印象に残りました。問いが何なのかを常に意識し、具体的な問いにまで落とし込むことが重要だと感じました。また、「問いを残す」ということは、問いを持ち続けることや自分が何を考えているのかを絶えず問いかけることであり、それにより、立てた問いが正しいのか、その問いに答えることで目標が達成できるのかを確認し続けたいと思います。さらに、問いを立てた後は「問いを共有する」ことが不可欠です。組織全体で方向性を共有しなければ、自分が解決しようとしている問題に取り組むことは困難になるため、問いの共有を常に心がけたいです。 工場問題の原因は? 現在、私たちの会社は世界各国に5つの工場を持っており、お客様が希望するタイミングでの供給が困難になるケースが頻繁に発生しています。この問題の原因を詳しく分析する必要があります。考えられる切り口としては、工場のオペレーションに課題があるのか、あるいはシステムの受発注の仕組みに問題があるのかなどが考えられます。この分析を通じて、現状の問題点を明確にし、対策を検討していきたいと思います。 目標達成の方法は? そのために目指すべきゴールと具体的方法、そしてその手段を実行することによって得られる価値についてしっかりと考えたいと考えています。検討した結果に基づいて資料を作成し、仮説を証明するための理由については、視覚的に分かりやすく示すように工夫したいです。この目的を達成するために必要なデータは何か、どのように分析すべきかを考慮しながら、自分の考えや実施したい施策について毎週の部内会議でチームメンバーと共有していきます。

データ・アナリティクス入門

問題解決のプロセスで人事制度の見直しを劇的に改善した話

問題解決プロセスの課題とは? 問題解決のプロセスについては以前から学習していましたが、日々の仕事で振り返ってみると、実際には使いこなせていないことに気づきました。多くの場合、What(何をすべきか)からHow(どうやるか)に直接飛んでしまったり、Where(どこで)やWhy(なぜ)を考えながらも、しっかりと分解できずに決め打ちに走ってしまうことが多かったです。現在、私の担当業務は「問題発見・提示➡施策提案・実行」の繰り返しであるため、今後は問題解決プロセスを意識して取り組んでいこうと思います。また、層別分解と変数分解という具体的な分解方法についても、新たな気づきを得ることができました。 人事制度見直しのステップは? 現在、社内では人事制度全体の見直しを進めようとしています。その際、今回学んだ問題解決プロセスを適用することで、どこから取り組むべきかを体系的に整理できると感じました。これにより、問題の特定や施策の検討が決め打ちにならず、幅広く論理的に進められるようになります。また、全体のどの部分を考えているのかが見える化されるので、チームでの議論や社内での説明(上司への説明)もしやすくなると感じました。 具体的には、人事制度をどのように分解し、それぞれの要素ごとに現状とあるべき姿のギャップを把握します。どこに問題があり、なぜそうなっているのかの要因を特定し、その結果として施策の検討(人事制度の見直し)も決め打ちにならず、優先順位もつけやすくなります。現状では人事制度が体系的に整理されていないため、まずはこれを機に人事制度のつながりを見える化してから、見直しに着手していきたいと思います。

データ・アナリティクス入門

仮説力で拓く新たな学びの旅

仮説とは何か? 仮説とは、論点に対する一時的な答えを意味します。仮説を立てる際には、決め打ちせず複数の可能性を検討することが重要です。フレームワークを活用して、どの指標を基準に、何と比較するか、またそのためにどのようなデータを集計し、どのように見せるかを考える必要があります。 データはどう取る? また、着目する指標や比較対象のデータを収集する際には、「誰に、どのように聴くのか」という点が大切です。都合の良いデータだけに頼ると、誤った仮説を前提にしてしまうリスクがあります。他の可能性を十分に考慮することで、不要な仮説を排除し、より正確な情報に基づいた議論につなげることができます。 議論はどう進む? 日常の業務においても、仮説をもとに論点を提示し、議論を重ねる場面が多いです。これまで経験や肌感覚から決め打ちしていた仮説も、複数の視点で検討することで、より網羅的かつ具体的な検証が可能になります。仮説を裏付けるデータの示し方や、どのように比較し、提示するかという方法も試行錯誤の対象です。 人事事例はどう見る? 人事領域の取り組みとしては、スタッフが出会い採用内定、入社からその後の活躍、さらには休職や退職に至るまでのジャーニーマップを構築した事例が挙げられます。まずこれまでの経験や収集できるデータをもとにストーリーとしてのジャーニーを描き出し、その後、ヒアリングや不足しているデータの補完によって仮説を検証・肉付けしていくという方法です。このとき、現状の仮説が網羅的かどうか、また他の切り口がないかを再確認し、データの取り方や示し方を見直すことが大切です。

クリティカルシンキング入門

思考を広げる!数字分解の新発見

数字をどう見捉える? 具体的なケーススタディを通じて、数字の分解やイシューの設定、メッセージの伝え方について学びました。数字を分解する際、特定の実例に引っ張られると、考えの幅が狭まることに気付きました。特に「観光」のイメージに縛られると、抽象度を上げる思考が難しくなりがちです。紙に書き出して共通点を探るなど、可視化する方法で考えるのが有効だと感じました。 見直しは本当に必要? また、イシューの設定では、他の数字を何度も確認しないと安心できない点が学びとして大きかったです。ひとつのイシューを見つけたとしても、「本当にそれで大丈夫か」「見落としていることはないか」を考え、数字の分解を見直すことを習慣にしたいと思いました。 チーム戦略はどうする? 現在リーダー役を務めているので、チームのメンバーや組織課題に向き合う際にこの知識を活用したいです。特に次年度のチーム戦略や目標を立てる際には、現状の組織課題をしっかりと把握し、イシューとして捉えた上で解決策を考えていくことが重要です。 抽象化の秘訣は? 抽象度を上げる思考は、身近な課題にも当てはまります。組織課題に取り組む際、他者から聞くチームのイメージや現在の業務に影響されて、思考の抽象度が上がりにくいことがあります。紙に書き出して抽象化する努力をしてみようと思います。また、イシュー設定に関しては、実務では分かりやすいイシューを見つけた時点で他の可能性を除外し、解決策を考えることが多いです。思考のプロセスを意識し、イシューを見つけた後にはそのイシューを再検討し、他の分解方法も試してみることを習慣化したいと考えています。

マーケティング入門

新サービス普及の鍵は適合性と試用可能性

イノベーションの普及要件とは? 比較優位、適合性、わかりやすさ、試用可能性、可視性がイノベーションの普及要件であるという話は、非常に印象的でした。特に、試用可能性と適合性については、新しいサービスや商品に顧客を移行させたい今の時代において、必要不可欠な観点だと感じました。例えば、スマートフォンの普及は、元々ガラケーで電話を持ち歩く文化や、PCのWEB活用の素地があったからこそ、スムーズに進んだと考えます。 セグメンテーションの重要性 また、現代は価値観が多様化しているため、セグメンテーションを細かくし、自社にとってどこがメリットなのか冷静に判断することが重要だと理解しました。具体的には、ハーゲンダッツが「大人のアイス」というターゲットを設定し、「ご褒美に買うアイス=プレミアムアイス」という新たなジャンルを開拓した例が挙げられます。 誰に何を伝えるべきか? お金を借りることに抵抗がある人が大半であるため、セグメントをしっかり行い、どの層に何を伝えるか(例えば、低金利で無担保融資が可能であること)を明確にすることが重要です。さらに、実際にどのようなシーンでお金を借りることができるのか(教育、旅行、結婚など)を具体的に伝えることが求められます。 自社サービスの再検討方法 このように、イノベーションの普及要件に基づいて商品を見直すことや、競合を意識することの重要性を改めて認識しました。これを機に、自社のサービスの長所や、プロモーションで顧客に与えたいイメージ、行動変数を含めたマーケット選定、プロモーションの方法を再検討していきたいと考えています。

戦略思考入門

ビジネス効率を左右するシナジーの真実

経済性の理解は十分? 規模の経済や不経済、範囲の経済、ネットワーク効果といった概念を正しく理解することは、事業経済性のメカニズムやビジネス法則を誤らないために必要です。特に、指数関数的に変化する現代では、テクノロジーがキーワードとなり、迅速な対応が競争の基盤となっています。 シナジーは本当に有効? 学んだことの一つに、「シナジーは本当にあるのか」という点があります。既存の資源を活用して効率的にビジネス展開を行うことが一般的ですが、その方法が本当に効果的なのか、既存資源が競争優位性として本当に機能しているのかを慎重に分析する必要があります。シナジーが逆に非効率的になることもあるからです。 部署異動は効果ある? 自社業務に当てはめて考えると、社内異動が範囲の経済に関連するのかという疑問が生じます。現在所属している技術部から、将来的にマーケティングや営業など他の部署への異動を考慮していますが、過去の知見や経験を新しい部署に活かすことでシナジー効果が本当に生まれるかという点について考えたいです。これをどのように分析し、判断すべきなのかを検討しています。 兼任制は効率化? また、組織内で兼任制を採用しており、ISO監査やプロジェクト管理、営業活動を行っていますが、規模の経済性から見るとこの方針が適切かどうかも重要な検討事項です。このようなことも鵜呑みにせず、メリットとデメリットをしっかり整理し、分析する習慣を持つことが大切です。指数関数的に変化する時代において、判断に迷う場合はまず行動を起こし、やりながら調整しつつスピードを出すことも求められていると感じます。

データ・アナリティクス入門

数字で見える学びの未来

どうして視覚化すべき? 数字に集約することと、目で見て理解することの大切さを再確認しました。纏めたデータをグラフ化するなど視覚化することで、ヒストグラムなどを活用しながらデータのばらつきを直感的に把握できる点が印象的でした。 比較で何が見える? また、データ分析は「比較」に基づく作業であり、仮説思考が重要だと感じました。分析のプロセスでは、仮説を立て、異なる視点とアプローチを用いることによって、より本質に迫ることができると理解しています。 代表値はどう使う? 代表値の使い分けと散らばり(標準偏差)を組み合わせる方法も興味深かったです。平均値や中央値、加重平均、幾何平均など、用途に応じた手法があるため、Excelで計算できることから複雑な計算式を覚える必要はなく、実務で活用しやすい点が良いと感じました。 成約率との関係は? さらに、営業活動のように暴露機会と成約率、またユーザーの購買意欲と成約数との因果関係を数値化する場合、代表値だけでなく標準偏差による散らばりを検討することで、ユーザーの傾向をより正確に導き出すことができると考えています。まずは仮説思考から取り組む姿勢が大切だと再認識しました。 グラフの魅力は? 最後に、提供される表形式のデータを様々なグラフで可視化し、検証のヒントを得る点も魅力的です。従来の平均値や中央値に加えて、標準偏差などの散らばりを取り入れることで、ユーザーの購買情報をより明確に把握できる可能性が広がっています。定性情報をいかに数値化してデータ分析に活用するか、その工夫が今後の課題であり、挑戦してみたいと感じました。

クリティカルシンキング入門

データの力で業務効率が劇的アップ

数字をどのように活用するか? 数字をただ並べるだけでなく、合計や並べ替え、比率などの作業を行うことで、数字の持つ意味をより深く捉えられるようになります。また、グラフ化することで視覚的に数字を捉えやすくなり、その意味を浮き彫りにすることができます。特に「目に仕事をさせる」という表現は、非常に印象的でした。 グラフ化の新たな視点とは? グラフ化する際には、10代や20代といった規則性ある分け方だけでなく、数字の意味を強調するために規則性がなくても範囲を設定することが有効であると理解できました。さらに、分類分けを細かく行うことも重要です。複数の分類に分けることで、見えなかったものが見えるようになり、誤った解釈を避けることができます。そのためには、自身が行った分け方が正しいのか、他に適切な方法がないのかを常に問い続けることが必要です。 業務に役立つMECEとは? また、MECE(漏れなくダブりなく)の手法について、具体的な分け方やプロセスの切り分けを改めて学ぶことができました。この手法はバックオフィスの業務において、本部集約化に向けた検討時に非常に役立ちます。各業務のプロセスを順を追って確認することで、どの工程をどの部門や担当者が担うべきかを明確にし、適切な本部移管を進められます。 日常業務での学びの生かし方 自分の業務においても、数字の合計や比率を出すだけで終わっている作業が多いことに気づかされました。これからは、「目に仕事をさせる」グラフ化というステップを取り入れ、その重要性を再確認しました。今後の業務において、この学びを生かしていきたいと思います。

戦略思考入門

リソースを活用した効果的な学びの秘訣

リソースの投入はどう? リソースは限られているため、最も効果的な場所にリソースを投入する必要があります。そのためには、優先順位を明確にし、判断基準をしっかり持つことが重要です。事例で学んだROI(投資した資本に対して得られる利益の割合)は非常に参考になりました。また、手元に判断材料がない場合には、仮説思考を活用して検討を進めることも有効です。異なるパターンを考慮し、ポジティブ、ネガティブの両面から設定を検討するのもよい方法です。複数の視点を持って考えることは、ビジネスの複雑な状況において必要不可欠です。 ROI評価、改善は? 判断過程でROIが低い業務は、思い切って見直すべきです。戦略においてはメリハリをつけて判断し、数値に基づいて決断することが求められます。 業務の見直しは? 自身の業務を見直す際、費用対効果を考えてみます。時給9千円に見合っているかどうかも考慮します。 業務改善の具体策は? - **帳票管理** 帳票の整合性確認に時間がかかっているため、これを自動化することを検討します。 - **報告資料** 報告内容が多く、時間がかかるため、上司が使わないであろう報告内容は簡略化します。 - **新規顧客獲得活動** マッチングプラットフォームを用いた活動で受注率が低いため、自組織の強みを活かした案件にシフトし、紹介活動に力を入れます。 - **活動行動ログ** より良い目標に向かうために活動の目標を明確にし、それに基づくデータを再確認します。正しい分析を行うために、ゴミデータの除去も意識します。

データ・アナリティクス入門

ロジックツリー活用でKPI改善を目指す!

ロジックツリーって何? ロジックツリーの使用方法について新しい発見がありました。ロジックツリーには、変数分解に加えて「層別分解」という使い方があるのです。層別分解は、全体を複数の部分に分けて同じ次元で揃える方法で、それぞれの階層の下には同じ要素が並ぶイメージです。一方で変数分解は、要素の掛け算を分解し、原因を特定するのに役立ちます。これらの手法を試行することにより、より包括的で明確な分析が可能になります。 営業支援機能はどう? R&D部門における営業支援機能のひとつとして、顧客向けPoCの作成や自社商材のクロスセル・アップセルの立案があります。しかし、これらの活動においてチームのKPI進捗率に大きな差が見られます。そこで、KPI管理している指標の前段にある要素のKPI設定に漏れがないかを確認することが重要です。一連の要素には、要素A→B→C→PoC作成→D→E→クロスセルなどがあります。 KPI設定は見直す? 目的は、KPI管理している指標の前段にある要素のKPI設定に漏れがないかを確認することです。このために、まず関係者とブレストを行い、現在の管理状況に関わらず関連しそうな要素のアイデア出しを行います。その後、出てきたアイデアを元に、現在のKPI設定が定量的かどうか、またMECE(Mutually Exclusive and Collectively Exhaustive)であるかを検討します。このプロセスの中でロジックツリーを使用し、特に不慣れな現在は層別分解と変数分解の両方を試し、それぞれの使用感をメモしておくことが有効です。

「検討 × 方法」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right