データ・アナリティクス入門

営業予測を刷新する新アプローチ

フレームワークの効果的な活用法とは? 今回の学びの中で、フレームワークのツールとしてロジックツリーとMECEが紹介されました。ロジックツリーは課題を細分化し、発見しやすくするための手法であり、MECEは問題をもれなく、ダブりなく整理するために必要な概念です。それぞれは様々な場面での分析に利用されますが、今回の復習を通じて今後の活用に向けた理解を深める機会となりました。 営業予測の新アプローチを試すには? 営業予測を行う際には、これまで直感に頼った予測を立ててしまいがちでしたが、今後は課題を分類し、分析した上で予測を立てることを心掛けたいと考えています。この新しいアプローチにより、異なる視点での分析が可能となり、より精度の高い営業予測が期待されます。 MECEを使った分析で得られるものは? これまでは同じ視点でデータを取り出して分析を行っていましたが、今後は課題を洗い直し、顧客の職種や規模、場所など、さまざまな角度からMECEを意識した分析を進めていきます。これにより、売り上げを伸ばすための施策のヒントを得られ、より具体的な情報収集と活用が期待されます。

戦略思考入門

学びの武器で戦略に挑む

戦略を見直す動機は? 4つの基本的なフレームワークを通じて、戦略的思考の基盤を学ぶ機会を得ました。これらのフレームワークは、各自が気付かずに行っている思考の一部を整理し、分析の抜け漏れを防ぐ点で大変有用だと感じています。複数の視点で同じフレームワークを活用することで、多角的に物事を捉えられるメリットも実感しましたが、一方で主観性や抜け漏れという課題も明確に認識する結果となりました。 サポート部門で何が起こる? サポート部門では、KPIを基に影響要因や限られた人的資源の最適配置といった課題が日々議論されています。このような現場において、学んだフレームワークを適用して分析を行うことは、より効果的なディスカッションや意思決定に繋がると考えています。 実践で何が変わる? 今後は、学んだフレームワークを実際の議論に取り入れ、戦略的な思考をさらに深める習慣を身につけたいと思います。また、ヘッドカウントのプランに重要な影響を与える新規案件については、3C、PEST、SWOTの各手法を活用することで、より多角的かつ精緻な分析が可能になると期待しています。

クリティカルシンキング入門

思考の制約が導く深い解答の鍵

制約が生む思考の深さとは? 私は、思考において制約があるほうが解答を導きやすく、制約がない場合の方がかえって困難な思考になりがちであることに気づきました。人間は、簡単に考えたことよりも、少し深く考え、もうワンステップ努力することで、より良い答えを得られると感じました。 顧客の本質をどう捉える? IT業界で営業職をしている私は、顧客の問題や課題を聞き出し、システム化のニーズや条件を理解した上で、顧客要件に合ったシステムを提案する機会が多くあります。この際に、顧客が何を求めているのかを正確に聞き取り、それに対する提案を行う場面で今回学んだ考え方を活用できればと思っています。また、社内での受注審議における説明など、多くの人に物事を説明する場面での事前準備にも応用できそうです。 効果的な提案の準備法 具体的には、顧客要件をなるべくシンプルに書き出し、提案ポイントを整理してそれがマッチしているのかを検討します。さらに、自作の説明資料に対して他者から質問を想定し(自分ならどこを質問するか)、その想定問答を資料のブラッシュアップ時に活用していきたいと思います。

データ・アナリティクス入門

データ整理で未来を変える学び

正しい手順はどう? 問題解決の4つのステップは基本的に「What→Where→Why→How」の順で進みます。このプロセスを通じて、あるべき姿と現状のギャップを数値で示すことが重要です。日常の課題解決にはロジックツリーを活用することが一つの手段として有効です。その際のコツとして、過度にMECEを意識するのではなく、感度の良い切り口を見つけることが肝心です。 保険業界の課題は? 具体的な課題として、保険業界でのデジタル化に関連する多くのデータが整理されていない点が挙げられます。この場合、どのようなデータが収集されており、またどのデータが不足しているのかを把握するために、ロジックツリーを用いて整理することが有用です。 施策立案はうまく? データを活用してデジタル化推進の施策やプロモーション案を策定するためにも、まず現状のデータを整理することから始めたいと思います。ロジックツリーを用いることで、デジタル利用率を手続き別や代理店の種別といった切り口で整理し、分析を進めます。これにより、より具体的で効果的な施策につなげることが期待できるでしょう。

デザイン思考入門

アイデアの花咲くコラボ術

仲間の意見はどう感じる? 他の受講生の発表を拝見し、短期間でこれほど多彩なアイデアが生まれるのかと驚くと同時に、さらに洗練されたフィードバックの重要性を実感しました。個々のセンスだけでなく、複数人でのコラボレーションやコミュニケーションが、成果物に大きな影響を与えることを改めて認識しました。 デザイン思考で何得る? また、デザイン思考は新製品やサービスの開発に留まらず、決まった答えが存在しない業務課題の解決にも効果的だと感じます。たとえば、最新の技術を既存業務に融合させるプロジェクトにおいて、ユーザーへの共感をスタートに試作とフィードバックを繰り返すプロセスは、従来の単純な試行錯誤に比べ、確実な成果を生むと確信しました。 ユーザー声、どう活かす? さらに、新しいプロジェクトを始動する際には、漠然とした計画やスケジュールだけでキックオフするのではなく、まずユーザーの声や抱える課題に全体の意識を向けることが重要だと考えています。解決すべき明確な目標をチーム全員で共有することで、各活動の一貫性を高め、より良い成果につなげていきたいと思います。

戦略思考入門

業務の効率化は「やらないこと」で決まる

優先順位付けの重要性とは? リソースは有限であり、戦略的に物事を進めるためには優先順位をつけることが重要であると理解しました。何をやり、何を捨てるのかを決めるには、判断基準を設ける必要があります。特に、投資対効果を算出することが一つのポイントです。根拠のある判断基準があれば、後ろ向きな印象のある「やらない/捨てる」という決断も納得感を持って周囲に説明できるとわかりました。 実証実験での課題は? 現在の業務において、「何をやらないか」を決められないことが大きな課題だと感じています。特に実証実験を始める際、規模や検証すべき内容(今回は何を検証しないのか)を明確にすることが、有限なリソースを効率的に活用し、仮説検証の精度を高めるために役立ちます。 効果的な仮説検証の進め方 これからは、各フィールドで進める実証実験の目的を明確にし、検証すべき仮説を見直していきます。チームで検証すべき仮説を洗い出し、どの仮説を優先して検証するかをグループ会議で議論します。また、担当フィールドで想定している開発機能も、その優先順位に基づいて絞り込んでいく予定です。

データ・アナリティクス入門

試行錯誤で見えた成長のヒント

原因はどこにある? 問題の原因を探る際は、まず全体のプロセスに分解し、どの段階で課題が発生しているかを明らかにします。その上で、解決策を検討する際には、複数の選択肢を洗い出し、根拠に基づいて最適なものに絞り込む手法が重要です。 A/Bテストの意味は? また、A/Bテストはシンプルで運用や判断がしやすいというメリットがあり、低コストかつ少ない工数で実施できるため、リスクを最小限に抑えながら改善を進める有効な手段といえます。 利用状況の課題は? 現在進めているサービスについては、利用者の活用状況を分析し、どのように利用され、さらに活用を推進するためにはどのような施策が効果的かを検討することが課題となっています。そこで、まず現状の利用状況を詳細に把握し、その分析結果をもとに仮説を立て、改善のための施策を検討していきます。 次のステップは? 具体的には、各施策を一つずつ実施し、その結果を確認しながら次のステップへ進んでいく方針です。施策の実施期間は概ね1~2週間を想定していますが、内容とともに期間も適宜見直しながら検討していく予定です。

データ・アナリティクス入門

小さな疑問から大きな発見へ

何故課題意識は必要? 分析の目的や課題意識を明確にすることで、日常の業務だけでなく、普段目にする分析データについても「なぜ?」と考える習慣が身につきました。例えば、ニュース記事で医師不足が取り上げられる場合、その背後にある分析の意図や解決すべき課題を自分なりに考察するきっかけとなりました。 施策評価はどう? また、業務で複数の施策を企画・実行する中で、効果を評価するための分析が重要だと感じています。中長期的な戦略の実行に際し、連続性のある施策を実施するためにも、小さな施策のブラッシュアップを繰り返す必要があると考えています。たとえば、アプリへのログインプロセスを細かく分解し、特に初回ログイン率の向上に向けた分析を進めています。 情報取得は万全? さらに、戦略立案の段階から必要な情報やデータが適切に取得できているかを精査し、取得できていないデータにはタグ付けなどの対応を実施して、常に分析が可能な状態を作り上げています。同じ条件で定期的にログの確認やレポート作成を行う仕組みを整備することで、継続的な定点観測が可能になりました。

クリティカルシンキング入門

多角的視点を磨くデータ探求の旅

切り口の偏りは? せっかくデータを作成しても、切り口が偏ると適切な分析ができない場合があります。そのため、まずは多くの切り口で検証し、仮に失敗しても恐れずに試みることが重要です。 視覚資料の活用は? また、グラフなどの視覚資料を効果的に活用するとともに、全体の区切りや範囲に注意を払い、ダブりや漏れがないように全体像を俯瞰しながら、目的に沿って細かく分解する工夫が求められます。 目的と創意工夫は? 目的を見失わずに、データを創意工夫して見せる姿勢も大切です。MECE(漏れなく、ダブりなく)を意識し、複数の切り口から分析を行い、その結果を分かりやすく伝えることを心掛けましょう。職場の意見を反映する際も、偏った分析にならないよう真の原因を追求することが必要です。 アンケートの目的は? 今後、職場環境の改善を進めるためにアンケートを実施する際は、まず目的を明確にし、事務局の方向性と従業員の意見のギャップを把握することが基本となります。さまざまな視点から課題を検証し、その分析結果を分かりやすく報告する工夫を重ねていきたいと考えています。

データ・アナリティクス入門

原因究明で見出す新たな一歩

原因はどこにある? 問題解決にあたっては、まず問題がなぜ発生したのか、その原因を明らかにすることが非常に重要です。原因究明のためには、問題が発生するまでのプロセスを分解して分析するアプローチが有効です。各プロセスごとにどこに問題があったのかを洗い出し、整理することで、問題の根本原因に迫ることができます。 改善策は効果的? このプロセス分析に基づいた仮説を複数立てたうえで、実際に改善策を試してみることも重要です。たとえば、A/Bテストを活用して実施した改善策の効果を検証し、より良い解決策に結びつけることが考えられます。こうしたステップにより、単なる経験や直感に頼った対応ではなく、実際のデータに基づく精度の高い問題解決が可能となります。 今後はどうする? 今後、課題への対応としては、まず問題が発生した経緯と各プロセスで何が問題だったのかを、具体的なデータ分析の結果から明確にすることを心がけたいと思います。そして、複数の仮説を立てた上で、改善策を実施し、その結果を詳細に分析することで、プロセス全体の質の向上につなげていければと考えています。

クリティカルシンキング入門

視覚化とロジックツリーで解決力UP!

なぜ定量化と視覚化が重要なのか? 定量化して物事を考えることの大切さと必要性、またグラフを作成して視覚化することの重要性を学びました。これに加えて、抜け漏れなく課題を考えるためにロジックツリーを利用し、様々な視点から解決策を導き出す方法が有効であることも理解しました。そして、最も大切なのは、解決すべきイシューを見極めることです。注力すべき課題や目的を明確にし、その役割を踏まえて解決すべき仮説を設定し、問題解決に取り組むことが重要です。 解決策の提示には何が必要か? 解決策を提示する際には、事実や定量データに基づいて解釈を加えることが必要です。また、要素を抜け漏れなく考えるために、様々な仮説を検討し、最終的な目的からずれないように注意することが求められます。 提案とコミュニケーションの手法をどう活用する? 仕事で提案内容や課題の特定、仮説を考える際には、ロジックツリーやグラフの作成などの手法を使って考えるとよいでしょう。また、コミュニケーションを取る際に、立場によって社内外の人がどんなことを考えているのかを言語化することも効果的です。

クリティカルシンキング入門

1スライド、1メッセージの魔法

グラフ選びはどうする? スライド作成においては、単に好きなグラフを使うのではなく、伝えたい意図に合わせたグラフを選ぶことが大切です。語り手が強調したいメッセージ(たとえば、順調な増加など)をしっかりと込め、読み手に伝わりやすい順序で情報を配置します。さらに、重要な部分は色や矢印を利用して強調し、視覚的に訴える工夫を施しています。 伝え方はどう整理? また、動画でのお客さんへのセールス、講義、ステップ配信のシナリオ作成、セールスレターによる長文の配信、さらにはお客さんへの定期コラムの作成といったさまざまな場面で、これらの手法が活用されています。どの場面においても、伝えたいポイントを端的にまとめる「1スライド1メッセージ」の原則が生かされています。 論理の整合性は? ただし、表現力に自信が持てる一方で、その裏側にあるロジックの安定性には改善の余地があります。この章で学んだ分かりやすい表現をより効果的にするためには、事前のロジックツリーやピラミッドストラクチャーを徹底し、情報の整理と論理の一貫性を確保することが今後の課題と言えるでしょう。

「課題 × 効果」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right