データ・アナリティクス入門

仮説と検証で輝くデータ分析

グラフ選びの意義は? データの基本的な加工方法について学び、どの場面でどのグラフを用いるべきかを考える大切さを実感しました。グラフの選択を誤ると、重要なポイントに気づけなくなる可能性があるため、今後はグラフ選びのセンスをより一層磨いていきたいと思います。また、X軸やY軸の設定がグラフの印象に大きく影響することも学び、客観的な視点でデータを分析する必要性を痛感しました。 分析視点の拡大は? さらに、販売実績の分析においては、年齢、性別、購入時期などの切り口でデータを細分化し、多角的に見ることでより深い洞察が得られると感じました。データを見やすく加工することで、迅速な意思決定に繋がる効果や、説得力ある資料作成に役立つ点も納得できました。 仮説検証の基本は? 一方で、仮説を立て検証するという基本ステップが省略されがちであると感じました。手元のデータのみで課題の発見から解決策の選定まで進める傾向が見受けられるため、仮説設定と検証のプロセスにもっと注力し、多角的な分析を可能にする適切なデータ加工の重要性を再認識しました。

デザイン思考入門

暗黙知で切り拓く学びの未来

どうして暗黙知が重要? 観察を通して得られる暗黙知と、インタビューで収集する形式知という分類に非常に興味を持ちました。本人が気づいていない、または言語化が困難な潜在的な課題というものは意外と多く存在するため、実体験がそれらの発見に大いに役立つと改めて実感しました。 仮説を疑う意味は? また、仮説にとらわれず、フラットな視点で観察やインタビューを行うことで、本質に近い課題を発見できるというアプローチにも魅力を感じました。一般的なインサイトよりも、特定の具体的なインサイトに焦点を当て磨いていくことに価値があるという考えは、普遍性を求めすぎないデザイン思考の特徴ともいえます。 バランスはどのように? さらに、全体と個、暗黙知と形式知など、対照的な要素のバランスをどのように取るかという点にも大きな学びがありました。とらわれないというキーワードは、これまでの自分の発想とは異なるアプローチを意識する上で、非常に重要な考え方だと思います。未知のものや違うものに敏感になることで、より高い精度のデザイン思考が実現できると感じました。

クリティカルシンキング入門

データ分析で見つける課題のヒント

課題をどう発見する? 本講座で、課題(イシュー)を特定するプロセスについて学びました。これまで、最終的に解決すべき問題が何であるかを自分の先入観や仮説だけに頼って考えていたように思います。今後は、各種データを様々な角度から分析し、その結果をもとに課題を特定する作業に慣れる必要があると感じました。 販売計画をどう分析? 具体的には、ソリューション販売計画の策定に取り組む際、この手法を活用しようと考えています。たとえば、ある製品について「売る」「売りたい」といった単一のキーワードだけではなく、現状や市場、価格など複数のキーワードを抽出してデータ分析を行い、さまざまな切り口からイシューを探索する方法です。 意見交換は効果的? さらに、大きな課題に対しては、課題を細分化したキーワードに分解し、各キーワードに対応するデータを揃えることで、より具体的なアプローチが可能になると実感しました。加えて、同僚の意見を積極的に求め、ディスカッションを通じて個人的な偏りを排除することが、より客観的にイシューを特定するために重要だと感じています。

データ・アナリティクス入門

仮説力が拓くあなたの未来

仮説をどう検証する? 仮説を検討する際は、決め打ちせずに複数の仮説を出すことが大切です。加えて、それぞれの仮説が補完し合い、異なる視点からの切り口を持つことを意識しています。自分の知見や簡単な検索だけに頼らず、3Cや4P分析などのフレームワークを活用することで、より精度の高い仮説が構築できると改めて実感しました。 提案の鍵は何? また、担当しているお客様に提案を行う際には、企業が抱えるビジネス課題やそれに対してどのような提案が有効かを日々考えています。しかし、時間の制約からホームページや業界情報の簡単な調査だけで済んでしまうこともあるため、本講座で学んだフレームワークを活用し、複数の仮説を立てる基本に立ち返ることを意識しています。 問題解決の秘訣は? 特に、問題解決のための仮説設定プロセスが非常に有効であると感じました。問題は何か、問題の程度はどれほどか、どこに原因があるのか、なぜその問題が発生しているのか、そしてどう対応すべきかという一連のプロセスをしっかり分けることで、仮説思考をより深めることができると考えています。

クリティカルシンキング入門

MECE活用でビジネスアイデアを整理する技術

視点の違いをどう活かす? 視点の違いや切り分け方によって、様々な考え方が存在することを理解しました。特に、他の方からの意見で、視点を効率的に切り出す手法を学んだことは非常に参考になりました。これは、私が得意ではないMECEに基づく情報の洗い出しに役立つ効果的な方法であり、大変勉強になりました。 事業企画における情報整理の要点 事業企画においては、ソリューションの提供価値を考える際、誰のどの課題を解決するのかという情報整理を論理的に行うことが重要だと考えています。また、意見交換を通じて、これらの情報が事実に基づいていることの重要性を再認識させられました。また、情報収集の際に実際に現場を訪れることの重要性も感じました。 MECEでの考察がなぜ重要? 現在検討中の事業企画のソリューションが、誰にとってのどの課題を解決するのかを、順序立ててMECEに考えようと思います。そして、一度立ち返って、自分が検討している事業分野全体の課題や提供価値をMECEに考察し、本当にこのソリューションが必要なのかを改めて見直していきたいと思います。

クリティカルシンキング入門

クリティカルシンキングで業務課題を解決する方法

繰り返し学ぶ重要性は? 本質的な問いの立て方を意識し続けることが重要です。ビジネススキルは繰り返して学習しないと身につきません。そのため、過去の学びを何度も反復し、確実に身につける必要があります。特にクリティカルシンキングは、あらゆるビジネススキルの基礎であり、重要な要素です。 クリティカルシンキングの活用法とは? 例えば、製造などで連続生産する際には、クリティカルシンキングを用いて課題を抽出します。そして、その課題に対して、3つの視点を用いながら解決方法をクリティカルシンキングで考えます。解決方法は、人々が求める視点で提示し、イシューを設定して筋道の立った考え方を構築し、軸がぶれないようにします。 効果的なデータ表現の工夫は? また、まとめたデータなどを図表で表現し、分かりやすくする工夫も必要です。課題を説明する際には、ポイント順に整理しながら説明することが大切です。相手がどのような情報を求めているかを考えながら整理し、まとめた情報を文章で表現することで、何が言いたいのかを自分自身で明確にすることが求められます。

クリティカルシンキング入門

問い続ける先に未来がある

本当にそれでよい? Week1からWeek6までの学習を通して、物事の考え方の基礎となるクリティカルシンキングを学びました。自分自身に対して「本当にそれでいいのか」と問い続けることの大切さを実感し、その経験が、自分の思考の癖を改善し、イシューに正しく向き合う力へとつながったと感じています。 真のニーズは? また、営業職として日々活動する中で、相手が何を考え、何を求めているのか、真のニーズは何であるのかを常に探ることは、自分が取り得る手段を増やし、結果にも現れると考えています。加えて、営業以外の新たな役割を担う中で、直面する課題に対しては失敗を恐れず、試行錯誤を重ねながら前進していきたいと思います。 疑問を共有する? 繰り返しになりますが、問い続けることが何よりも大切です。自分が発信する問いを仲間と共有することで、より良いものを生み出せると信じています。どんなに些細な疑問であっても、相手の質問意図を正確に捉えるために、自分の考えが本当に正しい解答であるのかを批判的に自問自答しながら、学びを深めていきたいと思います。

データ・アナリティクス入門

WHYを追う!仮説×データの挑戦

仮説検証で何が分かる? ライブ授業では、WHAT⇒WHERE⇒WHERE⇒HOWの順番に沿って、適切な仮説を基にデータ検証を行う重要性を再認識しました。以前学んだクリティカルシンキングにおける問題解決のステップと共通点が多く、両者の関係性がよく理解できました。仮説検証のプロセスにデータ分析を組み合わせることで、より良い課題解決や提案が可能になると感じています。 内部監査にどう活かす? この考え方を、私自身の内部監査業務にも取り入れ、問題の核心に迫る質の高い改善提案を実現したいと思います。特に、これまであまり重視してこなかったWHYの分析については、今後、的確に問題の真因を把握するために、重点的に実施していく予定です。 MECEで本質をつかむ? また、課題に対して決めつけず、全体をMECEの視点で捉えながら不要な部分と深堀が必要な部分を明確に区別したいと考えています。深堀が必要な箇所については、改めてWHAT⇒WHERE⇒WHERE⇒HOWのステップを踏み、考えを可視化して説明できるよう努めることが大事だと実感しました。

データ・アナリティクス入門

問題発見力を鍛えよう!課題形成の基本

問題発見力を高めるには? 問題を発見し、その問題点を把握する力、すなわち問題発見力が重要です。ありたい姿と現状のギャップを見える化し、課題形成力を高める必要があります。現状を定量的・定性的に把握するためには、数値化や見える化が欠かせません。目的や仮説をイメージしつつ、行ったり来たりしながらも、ゴール目標に向けて時間軸を持って到達することが大切です。 採用市場で競争優位を得る方法は? 採用市場の変化においては、問題発見と課題形成のプロセスが重要です。この過程で優先度や重点化の思考を入れ、重要性や緊急性の観点からもデータを分析します。それによって、競合他社との優位性を評価しながら、効果的かつ先進的な人材獲得の取り組みを推進することができます。 幸せのため働く姿勢の意義は? 「誰かの幸せのために、まっすぐはたらく」という考え方を体現し、シンプル、オープン、フェアの観点から積極的に採用市場を分析します。将来の基幹人材の獲得を目的に、ゴール(6月)から逆算してセグメントごとの実行計画を立案・推進することが求められます。

データ・アナリティクス入門

論理で切り開く自分革命

状況整理の意義は? 直面している状況を具体的に整理し、何が問題なのかを明確にするプロセスが非常に役立ちました。特に、あるべき姿(To be)と現状(As is)のギャップを定量的なデータをもとに洗い出すことで、客観的に問題点を把握できるようになったと感じます。 課題の対処法は? 何から取り掛かるべきか迷ったときは、What(何が)、Where(どこで)、Why(なぜ)、How(どうやって)のステップを参考にすることで、論理的に整理しながら課題にアプローチできました。たとえば、収支の問題に直面した際は、売上と費用に分けてどこに課題があるのかを、ロジックツリーを活用して可視化する手法が有効でした。 学びや実感は? また、クライアントが提示する課題が本当に解決すべき問題であるかを見極めるために、内部の上位者とのディスカッションを通じて仮説を壁打ちする機会が持てたことは、より良い提案や新たな切り口を考える上で大いに学びとなりました。これらの経験は、問題解決の手法の幅を広げ、実務における対応力を高める大きな糧となっています。

デザイン思考入門

柔軟な視点で未来を拓く

なぜプロダクトアウトはリスク? 無意識にプロダクトアウトに偏った仮説を立てたり、収集したインタビュー結果から都合の良い回答だけを抜き出してしまうリスクについて学びました。自分の業務でも、マニュアルやルールに沿って考えがちですが、大切なのは相手の立場に立った提案を行うことだと感じています。 山と悩みの共通点は? また、先日のワークでは、登りたい山やその目的は人それぞれであっても、悩みの本質においては大きな違いがないことが分かりました。作業に取り掛かる前は、個人ごとに登る山や抱える悩みは多種多様だと考えていました。しかし、仮説立ては重要であると同時に、それに固執しすぎない柔軟さも必要であると実感しました。 課題定義は何を示す? さらに、課題の定義については、既存の枠にとらわれず、対極の視点からも考えることが求められると感じています。そのためには、視野を広げ、さまざまな知見を取り入れる努力や、周囲の意見を聞くことが重要であり、個人だけで解決しようとするのではなく、チームとして協力することが望ましいと考えています。

データ・アナリティクス入門

なぜとどうで解く課題の本質

なぜWhyとHowを重視? 今週は、What→Where→Why→Howの流れの中でも、特にWhyとHowの部分に重点を置いて学習しました。問題解決のプロセスとして、まずプロセスを細かく分解し、その問題に至る各課題について、なぜその状況に至ったのかを仮説を立てながら考える手法が印象に残りました。 なぜ原因を深堀? また、複数の原因を明確な根拠に基づいて絞り込むことが、問題の本質を理解する上で非常に大切だと感じました。実務においても、売上やサイト訪問数などの行動変容と、認知度や利用意向といった態度変容の両面から施策を検証し、その結果に対してなぜ売上が伸びたのか、認知度が上がったのかと、丁寧にプロセスを分解することの重要性を再認識しました。 なぜ多角的検証? さらに、施策の結果をすぐに結論づけるのではなく、各プロセスを細かく見直し、仮説に基づいて多角的な切り口で施策を検討する姿勢が大切だと感じました。そのため、A/Bテストや簡易調査などを定期的に行い、施策の効果や課題を可視化して検証することが求められると学びました。

「課題 × 本」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right