デザイン思考入門

体験と共感でひらく解決の扉

実体験はなぜ必要? ユーザー視点で課題の本質や解決策の価値を理解するためには、単に「ユーザーの気持ちで考える」だけではなく、「実際に自分で体験する」か「体験者に話を聞く」ことが大切だと感じました。多くの人の声を聴くことで、課題解決を重ね、より質の高いソリューションを提供できると実感しています。日々の業務においても、特定の意見だけでなく、多くの声を取り入れるとともに、自分自身が体験して共感する姿勢を心がけたいと思います。 登山体験はどう? 普段あまり登山をしない自分ですが、ネットで調べたり経験者の話を聞くことで、これまで感じながらも言語化できなかった点や新たな発想に気づかされ、大変学びになりました。ユーザーの行動を知るための具体的なアクションについて、これまで十分に調べることができていなかったため、今後はさらに積極的に参考にしていきたいと考えています。 共感はどう活かす? 「共感」フェーズにおいては、ユーザーの気持ちを単にイメージするだけでなく、自分自身がユーザーになりきったり、幅広く情報を得ることが重要だと感じました。ユーザーが何に価値を感じ、どのような課題や障壁が存在するのかを正確に捉えなければ、その後に提供するソリューションが的外れになってしまうと考えています。

戦略思考入門

優先順位で事業成功を掴む方法

判断基準をどう考える? 戦略的な選択を行うためには、優先順位づけをする際の判断基準を明確にすることが重要です。情報が不足している場合は、仮説思考を活用し、複数の仮定を設定して検討することが求められます。判断基準を考える際は、複数の視点から多角的に検討することが効果的です。優先順位をつけるということは、優先対象を決めるだけでなく、優先しないものを切り捨てる選択も含まれます。 国際事業の戦略は? 現在、私は4カ国で事業開発に携わっていますが、すべての国においてコミットしており、その結果、市場での優位性や取り組みの実現可能性が低い国にも一定のリソースを割いてしまっていることが課題となっています。このような状況では、捨てる選択をすることが必要とされています。 合理的選択の基準は? 選択を合理的に行うために、以下の判断基準を設け、客観的に事業開発に取り組む考えです。それは、(1)市場において当社の優位性があるか、(2)短期間で成果達成が可能か、(3)取り組みに十分なリソースを割けるか、(4)本社の戦略に合致しているか、という基準です。12月までにこれらの基準に基づき、取り組む事業を絞り込み、各事業のタイムラインやチーム体制を明確にして関係者からの合意を得ることを目指します。

戦略思考入門

フレームワークで見つける新たな視点

フレーム活用の効果は? フレームワークを活用することで、漏れなく効率的に検討を進められることを再認識しました。特に、フレームワークを皆で習得することで、メンバー間で共通の言語を使って会話ができる点が大きな利点だと思います。以前は3CやSWOT分析、バリューチェーン分析などの基本的な分析をしないままに戦略を立てようとしていました。しかし、まずは自分自身で実践し、手を動かして考えることが必要だと感じました。 情報不足の理由は? 3CやSWOT分析を行うためには、業界や他社の情報がまだ不足していると感じているため、これから地道に情報を収集していきます。一方、バリューチェーン分析に関しては、自分の所属する部署に限定して分析するのも良いかもしれないと考えました。このフレームワークは、どこに人材と資金を投入すべきか判断し、経営陣からの合意を得る際に非常に有効だと実感しました。 実践から何学ぶ? 具体的なアクションとしては、まず3CとSWOT分析を試してみて、空白部分を明らかにし、見えていない点や情報不足の箇所を洗い出します。また、自チームのバリューチェーンを描いて、同僚や上司と共有し、フィードバックをもらいながらブラッシュアップしていきたいと考えています。

クリティカルシンキング入門

問いたてが変える業務の未来

問いたては何だろう? 講義全体を通して、問いたてと構造化のプロセスを自分なりに習得できたと感じています。普段の業務では、これらの基礎的な手法を用いることが当たり前でありながら、問いたてが疎かになることで前提が揺らいだり、構造化の要素が不足して納得感が得られないと実感しています。 どう応用すべき? 講義を通じて、問いたてと構造化プロセスの重要性を再認識できたのは大変意義深いことでした。この経験を活かし、日常業務にどう応用できるかをさらに考える必要があると感じています。 なぜ把握困難? また、問いたてが十分に行われない原因として、自己の思い込みや落ち着きのなさから、情報を正しく把握できなくなっている状況が挙げられます。この問題を解消するためには、一旦冷静になり、手書きのメモなどを活用しながら、まず問いたてや構造化の要素を書き出すことが有効だと考えます。 対話で何が変わる? さらに、その後は自分自身の言葉で他の人と対話し、問いたてに対する回答が十分かどうかフィードバックを得るようにすることで、確かな理解につながるでしょう。日々の業務において、即レス対応が求められる中で、トライ&エラーを繰り返しながら、これらのプロセスを確実に習得していきたいと思います。

データ・アナリティクス入門

分析と比較で成果を最大化するヒント

分析には何が必要か? 今週は、「分析には比較や目的設定が重要であり、条件を揃える必要がある」という内容を学びました。確かにそうだと思う内容が多く、これらのポイントは今後も常に忘れないようにしたいです。 新たな知識の発見 一方で、LIVE授業を通じて新しい知識も得ることができました。定量分析に定性分析が加わることや、平均にするべき数字と平均にしないほうが良い数字など、目的によって異なるという点が特に興味深かったです。 クライアント提案時の比較 クライアントへの提案時には、広告効果を伝える必要があります。他社や過去の結果と比較し、より効果があることを示したいです。また、自身の営業計画を立案する際にも、過去の実績や先輩の成果と比較し、達成の共通点を探りたいと思います。 上長との振り返りで何を確認する? まずは上長と今回の学びを振り返り、クライアントへの提案で話せるように比較ポイントを洗い出したいと思います。上長と取りこぼしがないか確認し、その後で必要な情報を集めます。さらに、四半期ごとの計画立案時には、自分の達成した成果と比較し、成功のポイントを明確にしたいです。また、達成傾向にある先輩と比較することで、さらなる成功の糸口を見つけたいと思います。

データ・アナリティクス入門

問題解決の基本を再確認:MECEとロジックツリーの活用法

問題解決の基礎を学ぶ 今週は、問題解決の4ステップ(What→Where→Why→How)のうち、What(問題の明確化)について学びました。目的を見失わないために、あるべき姿と現状のギャップを数値や定量的に示すことが重要です。そのため、MECEを使い、漏れなく重複なく分解して考えると良いということを再認識しました。 分解の難しさをどう克服する? 過去にロジックツリーを学んだことがありますが、MECEを意識しながら何で分解すべきかを羅列するのは難しいと感じています。多くの場合、目の前の情報や限られた知識だけで分解した気になってしまうことが多いです。この課題を解決するために、最近は生成AIを活用し、プロトコルやフレームワークを使って客観的な情報を得る機会が増えています。これにより、自分でロジックツリーを使って分析しつつ、他者やAIから得られる情報を組み合わせて問題を明確化していきたいと考えています。 学びを日常でどう活かす? 毎月の会議資料や日常の部門の問題解決手段を検討する際に、この学びを活用します。ステップを踏んで考え、MECEを意識しながら、広く情報収集し、ロジックツリーを使って情報を分解することで、まずは問題を明確にすることから始めたいです。

データ・アナリティクス入門

市場を読み解く!成功する仮説の立て方と活用法

3Cと4Pの学び方は? 3C(市場・顧客・競合・自社)と自社を細かく検討するためのフレームワークである4P(製品・価格・場所・プロモーション)の関係について学びました。これにより、市場分析がより具体的かつ体系的に行えるようになります。 仮説を複数立てる意義とは? また、仮説の立て方についても学びました。仮説は一つではなく、複数立てることでその有用性が証明されやすくなります。仮説には問題解決のための仮説と結論の仮説があり、それぞれの役割が明確です。 新卒市場での戦略は? 例えば、新卒市場での人材獲得では、採用実績校と定着性を数値化し、学校訪問や求人活動を行うことで、技術系就職担当教授やキャリアセンターの職員に対する認知と共感を得る可能性が向上します。これにより、相関関係が期待できる重点対象校へのアプローチが効果的になります。 中国・四国エリアでの具体的な活動 具体的には、中国・四国エリアの国立高専(香川、阿南、新居浜、高知、呉、宇部、米子、松江、津山)を対象に、卒業生名簿と直近3~5年間の実績データをもとに学校訪問を行います。特に、内々定者がいる学校には個別情報を対面で提示し、認知と共感を高めるよう働きかけることが重要です。

クリティカルシンキング入門

アウトプットで広がる新たな可能性

なぜアウトプットが必要? アウトプットの重要性が強く印象に残りました。単に知識を得るだけでなく、実際に行動に移すことが成長へと繋がると感じています。自ら気づきを得るプロセスが、さらなる学びを促す鍵となると実感しました。 なぜクリティカルシンキング? また、クリティカルシンキングの力を身につけることで、より多くの人に影響を与え、動機付けできるという点も大変印象的でした。思考には視点や立場、そしてスコープといった制約があるため、日々のアウトプットにおいてこれらを意識しながら情報を整理することが重要だと考えています。 受け手理解はどう? さらに、社内外を問わずドキュメントを作成する際は、受け手の暗黙の前提を理解するとともに、自分自身の思考の偏りが出ていないかを注意深くチェックすることが求められます。タスクを進める際にも、目的を常に意識し、依頼内容の背景や目的を理解することが、質の高いアウトプットにつながると感じました。 なぜ思考癖を見直す? 最後に、思考のクセがどのように形成されるのか、また、相手の暗黙の前提をどの程度まで理解すれば良いのかといった疑問もあり、今後の学びの中でさらに深めていきたいと考えています。

データ・アナリティクス入門

相手の心を読む学びの軌跡

相手の意図をどう把握? 報告を求める相手の意図や背景を正確に把握することは、適切なフィードバックや判断を行う上で不可欠です。相手が求める情報や要求の真意を丁寧に確認することで、誤解を防ぎ、必要な情報を正確に得ることができます。 どの視点を取り入れる? また、分析を行う際には、一方的な見方に偏らず、複数の意見や視点を取り入れることが重要です。そうすることで、客観性が向上し、信頼性のある判断が可能になります。結果として、最終的な報告内容も幅広い視野に基づいたものとなり、さまざまな関係者が納得できる結論に導くことができると考えられます。 学びをどう活かす? 今週学んだ「相手の意図や背景の正確な把握」と「多角的な視点の取り入れ」は、クライアント対応やプロジェクト管理に大いに活かすことができます。特に、クライアントの要件定義やプロジェクトの進捗報告の際には、相手の真意を丁寧にヒアリングすることで、期待値のズレを防ぎ、信頼関係の構築につながります。また、チーム内の意思決定においても、メンバーやステークホルダーの多様な意見を取り入れ、客観的な分析を行うことで、より精度の高い提案や解決策を提示できると期待できます。

データ・アナリティクス入門

目的明確!多角的視点で読み解く

分析の目的は何? 分析とは、比較によって本質を浮き彫りにする作業であると再認識しました。分析の目的を明確にし、適切な比較対象を選ぶことが、納得感のある結果を導くための基本であると感じています。また、目的に応じた情報の見せ方が存在するという理解も深まりました。 情報整理の必要性は? ダイバーシティ推進の担当として、社内の属性割合や勤務実態の定量データ、そしてアンケート結果といった定性データを扱う機会が多い中で、まずは情報の用途や目的を明確にすることの重要性を改めて認識しました。必要な情報をより深く掘り下げ、検討していくことが今後の課題です。 多角的視点はどう? また、自分だけの視点に偏らず、他者の意見を取り入れることで、多角的な視点から情報を集約したいと考えています。こうすることで、より客観性の高い分析が可能になると実感しています。 透明な分析方法は? 一方で、分析の目的に応じた仮説設定が、恣意的に都合の良い情報操作につながるのではないかという懸念も感じています。今後の学びを通じて、この疑問に対する気づきを得るとともに、より透明性のある分析手法の習得を目指していきたいと思います。

クリティカルシンキング入門

データ整理で見えた多面的な視点の新発見

データはどう活かす? データをグラフ化することで、共有者全員が視点の漏れを確認でき、短時間で状況を把握できることに気付きました。角度を変えて情報を整理することで、複数の視点を生み出すことができました。また、留意点として、分解する際には、思いつくことから手を付けるのではなく、「When」や「How」といった枠組みで考えることで、漏れのない結論にたどり着けることを実感しました。 部門承認はどう取得? 研修計画を部門承認に使用する際には、実施方法や日程、参加者の切り分けなど、多くの検討事項があります。部門の承認を得るために、目的に沿った切り分けの考え方を使う必要があります。そして、部門説明の際には、即座に理解できるわかりやすさや、視覚的に理解が進む資料を重視したいと考えています。学んだグラフ化を使用する機会は少ないかもしれませんが、情報が伝わりやすい図の検討が重要です。 資料作成の工夫は? 具体的には、切り口や切り分けの考え方を一枚にまとめ、自分なりの順序を整理します。そして、研修計画の検討事項ごとに切り分けを行い、提案資料を作成する際には、数字や表ではなく、図で示すことができるよう工夫してみます。

クリティカルシンキング入門

データ分析の新たな視点を発見!

データの見方はどうなる? データの視点やグラフの表示形式が異なるだけで、見方が大きく変わることを実感しました。データ分析を行う際、まず仮説を立て、その仮説に基づいて情報を得るための切り口を考えたいと思います。逆に、他者が行ったデータ分析の結果を見るときは、その結果やグラフをそのまま信じるのではなく、見落としていることがないかを注意深く確認することを心掛けたいです。 顧客アンケートはどう見る? 業務で顧客アンケートを分析する機会が多いため、分析時に複数の観点から試してみたいです。また、サービス改善を設計するときにも、データを根拠にした設計ができるように役立てたいです。特に定性的データ、つまり自由記述のデータをどのように分析していけばよいのか、これからさらに学んでいこうと思います。 定性と定量の使い分けは? アンケート分析に関しては、事業部での週次ミーティングで報告することが多いため、その際には複数の観点からの分析結果を提示できるようにしたいです。また、定性的データの解釈に関しては、単独で分析するのではなく、定量的データと組み合わせて客観的に分析できるように努めたいと考えています。
AIコーチング導線バナー

「情報 × 得る」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right