データ・アナリティクス入門

データが照らす学びの軌跡

データ比較の意味は? データの比較を通して、その意味合いを見出す手法として、数字に集約する方法とビジュアル化する方法の2つのアプローチがあることを学びました。 代表値の選び方は? 数字に集約する手法では、まず代表値に着目します。代表値としては、単純平均、加重平均、幾何平均、さらには中央値が挙げられます。また、データのばらつきを評価するためには標準偏差を利用するのが有用です。どの手法を採用するかは、単に数値を並べるのではなく、各数値が持つ意味合いを十分に考慮した上で、目的に見合った適切な評価方法を選択することが重要です。 評価手法は何だろ? 成長率や進捗率の評価では、場合によっては幾何平均が適していることもあります。ただし、実際の業務においては、単純平均や標準偏差による評価が一般的に用いられるケースが多いです。評価の目的やデータの意味合いによっては、中央値や幾何平均も選択肢に入れて、適切な評価手法を考慮する必要があります。 グラフ選びはどうする? また、データのビジュアル化にあたっても、まずその目的を明確にし、適したグラフなどの表現方法を検討することが大切です。目的に合わせたデータの加工や表示の手法を選ぶことで、情報をより具体的かつ分かりやすく伝えることができると実感しました。

クリティカルシンキング入門

見やすく伝わるスライド作成の秘訣

グラフや色の選び方の重要性は? 私が今週の学習で特に印象に残ったのは、伝えたい要素に応じて適切なグラフや色、アイコンを利用することの重要性と、相手に情報を探させないことの大切さです。情報を詰め込みすぎてしまう傾向があるため、「ぱっと見でわかる」スライドを作成することを心がけたいと思いました。また、スライド作り自体が工数の大きい作業であることを意識し、「本当にスライドで伝える必要があるか」をよく考えた上で、作業計画を立てるべきだと再認識しました。 効果的な資料作成法を考える 例えば、クライアントへの現状報告や打ち手提案の際には、先月との比較が一目でわかる資料や、競合他社との比較を可視化した資料を作成したいと思います。さらに、相手に読んでもらえる文章にするために、メールの題名をキャッチーなコピーにすることや、見出しを工夫することが重要だと感じました。 スライドのメッセージを明確にするには? フォントなどは社内規定があるため、それを遵守した上で、「このスライドは何を伝えたいのか」を作成前に明確にすることが重要です。また、資料を作成する際には、この情報が何の根拠によるものかを必ず意識していくつもりです。読者にとって理解しやすいように、1スライド1情報で作成することを心がけたいです。

アカウンティング入門

資金戦略が導く成長のヒント

自己資金と銀行利用の違いは? 同じカフェの経営においても、経営方針が異なることで運営方法が大きく変わることを理解しました。特に、自己資金だけで事業を回す場合、拡大や発展に限界があることが明確になりました。一方で、銀行などからの資金調達を活用することで、事業と利益の拡大を狙えるため、戦略上の重要性を実感しています。 BSの違いはどこ? また、現在管理している子会社のバランスシート(BS)を比較すると、同じ業種であっても資金調達方法に大きな差があることが見受けられます。ある会社はレバレッジを最大限に活かして成長を追求するのに対し、別の会社は豊富な現金を保有し、限られた資産の中で運営しています。このような異なる経営アプローチが互いの特徴として表れているため、双方の良い点を共有しシナジーを生み出したいと考えています。そのためにも、BSの理解をさらに深める必要性を感じています。 情報共有の意義は? さらに、企業や業種ごとのBSの違いについて少しずつ理解が進んできたと感じています。上場企業の決算資料も確認し、経営者の考えや方針を読み解くことで理解を深めることを目指します。自分だけの学びに留まらず、部内で情報を共有し合い、互いに教え合うことで知識を確実なものにしていきたいと思います。

クリティカルシンキング入門

分析で見える本質の大切さに気づく

物事の本質をどう捉える? 物事の本質は目に見えるものだけではないと認識しました。重要なのは、分解を通じて物事の本質に迫り、事実を正しく把握することです。また、人それぞれの考え方の違いによって視点が異なるため、それが正しいのかどうかには明確な答えがないかもしれません。しかし、傾向を捉えるという点において、多くの人が目指す方向性を見極めることが重要であり、これが会話において必要な学びであると理解しています。 分析をどう進めるべき? 普段からの分析実施においては、その分析の深度や結果の利用意図、求めている情報のターゲットを意識することが必要だと考えています。よく言われる「モレなくダブりなく」という考え方は、テスト計画の際にも必須で、現在のテスト計画では全体を見据えた適切な視点からテストを行い、抜け漏れがないように進めていきたいと思います。 継続的な努力はどう続ける? 考えることをやめずに、引き続き分析能力と処理速度を向上させるために脳を活性化させ、様々なものを分解して物事の本質を捉えていきたいと考えています。また、習慣は身についていると感じていますが、さらに処理スピードを上げ、人に合わせた最適な結果を出せるよう、正確な情報の提供を心掛け、日々努力を続けていきます。

戦略思考入門

学んだフレームワークで未来を切り拓く

範囲の経済性を理解するには? 今週は、規模の経済、習熟効果、範囲の経済性、ネットワークの経済性について学びました。特に範囲の経済性は、その適用範囲が非常に広いことに驚かされました。このようなフレームワークを利用することで、問題の本質を見極め、どう解決に導くかを常に考えることが重要だと感じました。一般的に「これは当然だ」と思われていることも、「本当にそうなのか?」と疑問を持つ姿勢が大切だと理解しました。 習熟効果と組織の連携 私たちの会社は基本的に販売を行っているため、実務においては習熟効果と範囲の経済性を組織として活用していきたいと考えています。特に範囲の経済性は人事異動や社員評価の場面でも役立つと期待できます。また、市場の声を本社に伝達し商品開発に生かすため、顧客ニーズの本質を見極め、それに基づいて規模の経済性が発揮できる分野や商品についての提案をしていく必要があります。 情報収集と考察力を鍛えるには? さらに、「本当にそうなのか?」と問い続けながら、本質を見極める習慣を付けていきます。そして、情報収集にあたっては、一つの情報源に頼らず、なるべく一次情報に触れ、何が正しいのか、また世の中がどの方向に進んでいるのかを考えていく考察力を養っていきます。

アカウンティング入門

図解で広がる学びと戦略の扉

図式の効果は? PL、BS、CSをつなぐ図式は非常に参考になりました。各要素の関係がわかりやすく示されており、文字情報だけでは得にくい理解が深まりました。テキスト情報も大切ですが、図式を効果的に用いることで、知識の習得が一層進むと感じました。今後は、すべての要素を図式化できるよう、各要素のつながりを意識して学習していきたいと思います。 知識活用はどう? 知識そのものは、事業構造や実態の把握に基づいた戦略の提言や予算策定などに活かしていきたいと考えています。その際、利害関係者に分かりやすく伝えることが重要だと感じています。また、部下のレベルアップのために、自分自身が良き指導者となり、効果的な教え方の方法論を身につけていくことも目標です。 議論の進め方は? さらに、業務上で体験した新たな知識を、AIを利用して検証することが好きです。物事の本質を把握し、その意味をAIとのディスカッションで深めることは非常に有効であり、楽しい取り組みです。知らないことや本質、定義が曖昧な知識に気づいた際は、すぐに議論を行うようにしています。これまでは単発的な知識に焦点を当てていましたが、今後は体系化や方法論についても積極的に取り組んでいきたいと思います。

デザイン思考入門

顧客の声とデータが描く未来

顧客視点はどうですか? 自社サービスの継続利用のための課題設定に際して、定性分析の手法を用いることにしました。顧客からの意見とともに、顧客接点に立つ営業部門からの声も取り入れ、複数の視点から情報を収集しています。また、暗黙知にも着目し、背景にある顧客倫理や潜在的ニーズを明らかにすることを重視しました。 迅速な設定はどう? 当初、一から定性データを収集する案も検討しましたが、社内で声がけを行ったところ、既存のインタビューやアンケートが意外にも多く集まりました。今回、迅速に課題設定を進める必要があったため、既存の定性分析結果に加え、定量分析や営業組織からのヒアリング結果をもとに課題設定を行う予定です。 分析手法は信頼できる? 定性分析は、質そのものに着目して行うコーディング手法など、すでに学術的に信頼されている手法がいくつか存在します。これらの分析から導かれたデータをロジックやプロセスに基づいて構造化することで、仮説を見出すことが可能です。一方、定量分析は仮説を磨き上げることが目的ですが、定性分析は新たな仮説の発見を主眼としています。ユーザーが抱える課題を的確に特定するためには、具体的な視点からのアプローチが不可欠です。

データ・アナリティクス入門

数字が語る業務改善のヒミツ

データの集約ってどうやる? データの比較法について、数字を集約して捉える方法、目で見て捉える方法、そして数式を用いて集約し関係性を把握する方法を学びました。普段何気なく実施していることの意味を理解することで、さらに大きな効果を得られる必要性を感じています。 代表値と散らばりの活用法は? また、データ加工のポイントとして、代表値と散らばりの両方を活用する事例を学びました。双方の特性を活かした可視化を上手く利用できれば、より具体的な分析が可能になると実感しています。 工数計算の見直しは? 業務改善の際に、工数の計算方法が一面的であったことにも気付きました。関わる人数や各作業の分析データが欠けていたため、今後はこれらの情報収集にも注力し、ビジュアル化した際の分析範囲を広げる可能性を感じています。 収集データの過不足は? さらに、すでに収集しているデータの過不足の確認も行いました。各個人が提出する情報を一元的に抽出するツールの開発は進んでいますが、項目に不足がないか確認し、もし不足があれば機能追加を実施します。一律に集まったデータに対しては、簡単なグラフ作成を通じて作業記録などの分析を行っていく予定です。

クリティカルシンキング入門

思考を可視化して得る新発見

どうやって問いを共有? 今取り組むべき課題に常に焦点を当て、その問いを周囲と共有し共通認識を持つことが重要です。このため、問いを可視化し、自分の思考に偏りがないかをメタ認知することが求められます。知識のインプット、アウトプット、他者からのフィードバック、そして振り返りを絶え間なく繰り返し、継続していくことが不可欠です。 どんな文章構成? これらの考え方は、文章作成やチーム内での発表、プロジェクトの企画・提案などの場面で活用できます。具体的には、すぐに文章を書き始めるのではなく、まず文章構成を考え、ターゲットとなる読者像に応じた伝え方を工夫します。また、ロジックツリーを利用して思考を明確にし、チームで共有する際には具体的な言葉を使って誤解が生じないようにします。さらに、目的に沿ったデータを選び、その使用意図を常に考慮します。 思考はどう見極め? 日常業務においてこれらのアプローチを心に留め、上質な情報のインプットとアウトプットを心がけ、周囲からのフィードバックを依頼します。思考が偏ることを防ぐため、仕事以外でも常に思考の過程を可視化し、メタ認知を実践することが大切です。

データ・アナリティクス入門

ビジュアルで味わう分析の面白さ

平均の意味は? 複数の平均(単純、加重、幾何)をビジュアルで理解できたのは大変参考になりました。計算自体は表計算ソフトを使用すれば難しくないものの、イメージをしっかりと思い出し、目的に合わせて正しく使用することが大切だと感じます。また、今まで漠然としか捉えていなかった標準偏差も、今後、平均とデータのばらつき具合を説明する際に大いに活用できると考えています。 分析方法はどう? 膨大な顧客情報や生産実績の分析においては、単純平均や幾何平均を用いた有用な分析方法があると実感しました。売れ行き製品の傾向をグラフで表現する際、散布図の利用も面白い発見です。これまで棒グラフによる比較が中心でしたが、何をアピールしたいのかを一歩深く考え、見せ方を工夫する必要性を感じさせられました。 データ活用はどう? 所属する営業グループ内でも、データ集計方法や見せ方に関して工夫が求められています。これまで、従来のやり方を盲目的に踏襲するか、各自の感覚に頼る方法に偏っていたため、私がリーダーとして理論に基づいたデータ抽出とグラフ選択を整理し、より効果的な活用方法を提示していきたいと思います。

データ・アナリティクス入門

営業予測を刷新する新アプローチ

フレームワークの効果的な活用法とは? 今回の学びの中で、フレームワークのツールとしてロジックツリーとMECEが紹介されました。ロジックツリーは課題を細分化し、発見しやすくするための手法であり、MECEは問題をもれなく、ダブりなく整理するために必要な概念です。それぞれは様々な場面での分析に利用されますが、今回の復習を通じて今後の活用に向けた理解を深める機会となりました。 営業予測の新アプローチを試すには? 営業予測を行う際には、これまで直感に頼った予測を立ててしまいがちでしたが、今後は課題を分類し、分析した上で予測を立てることを心掛けたいと考えています。この新しいアプローチにより、異なる視点での分析が可能となり、より精度の高い営業予測が期待されます。 MECEを使った分析で得られるものは? これまでは同じ視点でデータを取り出して分析を行っていましたが、今後は課題を洗い直し、顧客の職種や規模、場所など、さまざまな角度からMECEを意識した分析を進めていきます。これにより、売り上げを伸ばすための施策のヒントを得られ、より具体的な情報収集と活用が期待されます。

データ・アナリティクス入門

データ分析で業務改革を目指す学び

データ分析で重要なのは? 現在、実務の初歩的なデータ分析に触れる機会はあるものの、改めて分析手法を体系的に理解することができました。特に、データ分析においては課題設定と仮説が極めて重要です。ただ単に分析手法の知識を持つだけでなく、領域知識も必要となるため、日常業務では特に業務理解を深めることを意識していきたいと思います。 業務改革で何が求められる? 業務改革の根拠としてデータ分析を利用することが多いですが、第1週の学習を通じて、私が現在取り組んでいるのは、分析というよりもむしろ集計や可視化に近いことを理解しました。したがって、まず課題の設定や仮説に基づいてどのようなデータで比較するかを慎重に検討し、情報を収集することから始めるべきだと考えています。 領域知識を高めるには? また、課題設定や仮説を立てるための領域知識が不足しています。そこで、領域知識の向上を目指しながらも、分析を進めるためには周囲の協力を仰ぐことも重要だと感じています。データが複数のシステムにまたがって保存されているため、一度どのようなデータが存在するのかを整理することが重要です。

「情報 × 利用」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right