アカウンティング入門

仮説が切り拓く未来のヒント

事業の意義はどう? オリエンタルランドを例に、B/Sの構造を読み解くという演習を通して、事業内容や提供価値に基づいた仮説の立て方を学びました。まずは、どのような事業を展開し、どのような価値を提供しているのかを整理。その上で、経費や資産の状況から、必要な支出や現有するリソースを考察しました。 分析結果は説得的? 全体として、事業内容や提供価値に即した仮説立てが非常に説得力があり、分析が的確に行われたと感じました。次回は、この分析結果を踏まえて、さらに具体的な行動計画に落とし込むと、知識の実践的な活用が一層深まるでしょう。 資金運営の課題は? また、実際の分析過程においては、非日常感の提供という点で、資産や経費の管理が徹底していることが強みとして浮かび上がりました。一方で、いずれの取り組みも大規模な資金を要するため、調達面での課題がある点も見受けられました。企業の事業形態や実態を十分に理解することが、より精度の高い仮説形成につながると再認識しました。 他社の検証はどう? さらに、他社の分析や情報収集においては、まず気になる企業の事業内容や提供価値について、思い描く仮説を立てることが重要です。その後、その仮説に基づいてどのようなP/LやB/Sが存在しうるかを考え、実際の数字と突き合わせることで、自分の仮説の妥当性を評価することができます。仮説が一致していれば自信につながり、もしずれている場合は、着目すべきポイントを学ぶ良い機会となるでしょう。 知識活用はどのように? この学びを今後のステップアップに役立てるためにも、得た知識の活用方法を具体的に考え、自己の分析スキルをさらに磨いていってください。

データ・アナリティクス入門

小さな問いから始まる大発見

分析の仮説はどう? 今後は、自社Webサイトのデータ分析において、依頼を受ける側から自ら積極的にABテストやファネル分析の目的、仮説、プロセスを策定し、実施に移す考えです。各プロセスを詳細に分解することで、どのページやどの段階でボトルネックが生じているのかを明らかにし、原因を追及するとともに、具体的な改善提案ができる分析へと進化させたいと考えています。また、日常生活に存在するささいなデータにも目を向け、シミュレーションを繰り返し行うことで、より一層の分析力向上を目指します。 問題をどう特定? 業務の効率向上や問題解決のためには、まず問題を明確にし、その問題がどの段階で発生しているのかを特定することが重要です。具体的には、以下の点を実践していきます。まず、Webサイトだけでなく、日常生活の中で得られるデータも積極的に収集し、「なぜ」を5回繰り返すことで原因に迫る姿勢を持ちます。次に、あらゆる分野の情報収集を行い、同僚とのコミュニケーションを通じてマーケティングの知識も深めます。加えて、依頼された作業にとどまらず、自主的に分析に取り組むことを意識し、課題に対しては目的や仮説を明確に設定し、複数の仮説を立てながら、ファネル分析やABテストの計画を練ります。 改善策の道筋は? さらに、プロセスをより詳細に分解し、各ステップでのユーザー行動(CS行動)を可視化することで、ボトルネックの特定と原因の解明を進めます。分析結果については、同僚と共有し、議論を重ねながら改善策を提案していく予定です。この一連のプロセスを繰り返し実践することで、より実践的な分析力を身につけ、今後の業務に活かしていきたいと考えています。

データ・アナリティクス入門

データ分析で広がる学びの可能性

問題解決のプロセスは? 解決策を導くためには、まず原因を洗い出し、プロセスに分解して問題に至るまでの過程を確認することが重要です。その過程で、どの部分で問題が発生しているのかを把握します。また、複数の選択肢を設け、その選択肢を根拠を持って絞り込むことが求められます。この際、決め打ちしないように心がけます。 判断基準とデータ収集のポイントは? 次に、判断基準を設け、重要度に基づいて順位づけを行います。分析と合わせ、仮説を立てながらデータを収集し、ABテストなどで仮説検証を並行して実施します。使われなければ知識は忘れてしまいますので、日常的に課題を捉え、原因を探索し、仮説を立てて解決策を考えることを意識することが大切です。 また、日々シミュレーションを意識的に行い、データをどうやって収集するかを考える癖をつけることも重要です。複雑なステップが関係する業務の改善策立案においては、プロセスを分解し、問題に至るまでの過程を丁寧に見直すことから始めるべきです。 複数解決策の評価方法は? 私自身、答えが一つに絞りがちな癖がありますが、複数の解決策を立て、それを判断基準に基づいて評価するステップを実行しようと思います。実行を急ぐあまり、ベターな一つの解決策で進めがちですが、その癖を直すことを目標に業務に当たります。 日常のシミュレーションをどう工夫する? 日々意識的に課題を発見し、シミュレーションを行うことを心がけ、有効なデータとデータ収集方法を考える癖をつけていきます。課題をプロセスに分解することで、本質的な課題へのアプローチに努め、仮説を実際にABテストなどで試すことを実施していきます。

マーケティング入門

実践で深まる学びの軌跡

自社商品の魅力は? 自社商品の魅力を伝える際、単に情報を伝達するだけでなく、顧客自身がその魅力を実感できるよう工夫することが大切だと学びました。また、マーケティングの視点を持つことで、企画・開発・販売といった各プロセスがうまく機能しているかを把握しやすくなります。 フレームワークはどう活かす? マーケティングフレームワークを自然に活用できないのは、十分に学習が進んでいない証拠だと痛感しました。今後はこれらのフレームワークを意識的に使いこなすことで、より実践的な知識を身につけたいと考えています。 市場調査の見方は? 市場調査では、仮説に基づく設計と分析を行い、顧客のニーズや動向を深く理解することに努めたいと思います。さらに、戦略策定の段階では、得られた顧客理解を活かし、どのような課題に対してどのようなソリューションを提供できるかを検討していきます。 プロモーションの本質は? プロモーション活動では、イベントや広告において、顧客志向をさらに追求することで、核心となるメッセージをより明確に伝えることができると実感しました。 情報収集のコツは? また、効率的な情報収集のためには、Googleアラートなどのツールを活用し、多様な媒体から最新の情報をキャッチアップすることが重要だと感じました。 営業同行の発見は? 最後に、営業部との同行を通じて、競合他社を利用している顧客に加えて、既存の大切な顧客とも直接話をすることで、自社の魅力や不足している点を具体的に把握できた経験は非常に貴重でした。

クリティカルシンキング入門

クリティカル思考で切り拓く未来

情報分析はどう進化? 論理的に情報を分析する方法を学び、情報を体系的に整理しながらその信憑性や関連性を評価する力が向上しました。これにより、正確な結論を導く基盤が整い、今後も業務の場面で役立てたいと考えています。 質問で何が深まる? また、適切な質問を行うことで、情報をさらに深掘りする力が養われました。さらに、複雑な問題に直面した際には、クリティカルシンキングを用いて効果的な解決策を見出すことができるようになりました。 日常業務の改善は? 今後の日常業務では、以下の点を意識して知識を活用していきます。まず、プロジェクトの進捗や市場動向を正確に把握するため、情報収集の際には信頼性や関連性を重視してデータを整理し、効果的な意思決定に繋げます。さらに、業務上の問題に対してはクリティカルシンキングで根本原因を特定し、創造的かつ実行可能な解決策を導入していきます。 具体的な取り組みとして、以下の習慣を実践していく予定です。 ・情報収集と分析の習慣化:   ✓ 日常業務で必要な情報を収集する際、信頼性や関連性を意識してデータを整理する   ✓ 分析した情報をもとに、定期的に報告書やプレゼンテーションを作成し、意思決定に役立てる ・フィードバックの活用と自己改善:   ✓ 定期的に上司や同僚からフィードバックを受け、自身の業務の進め方を振り返る   ✓ 改善点を明確にし、具体的な改善計画を立て、次の業務に活かす 以上の学びを活かし、今後の業務改善と効率向上に繋げていきたいと考えています。

データ・アナリティクス入門

目標設定で描く成功の道

目標設定の極意は? まず、結論のイメージを明確に持ちながら取り組むことの大切さを実感しました。一度目標を定めることで、問題がどこにあるのかを細分化し、解決に向けた要素を順序立てて洗い出すことができると感じています。また、単に分析するだけでなく、考え得る原因を幅広く仮説として立て、実際に検証するプロセスが非常に有効だと考えています。 データ収集の工夫は? 次に、データ収集の段階ではアウトプットとなる最終形を念頭に置き、必要なデータが不足している場合は柔軟に追加を行うことが重要だと思いました。集めたデータに対しては、有用な情報を引き出せるようどのように加工するかを常に考える姿勢が、最終的な成果に大きく寄与すると実感しています。 進捗管理の秘訣は? また、プロジェクトの進捗管理においては、月次レポートの形式や要素を特定する際に、学んだ知識を活用しながら、問題点の洗い出しや原因分析を進めたいと考えています。プロジェクトごとに必要な情報を細分化し、検証することで、より的確な進捗管理が実現できると思います。さらに、可能性のある原因については一つに絞らず、複数の仮説を立てながら網羅的に検討することが効果的だと感じています。 加工方法はどう? 最後に、データ加工に際しては、どのような方法が最適であるかを検討しながら進める必要があると学びました。これまでの学びを今後の実践に活かし、より実践的で効果的なプロジェクト管理に取り組んでいきたいと思います。

データ・アナリティクス入門

仮説思考で課題を究める実践術

フレームワークは何に役立つの? フレームワークの使いどころについて、3Cや4Pといったものは聞いたことがあっても、実際にいざというときに活用できるかどうかが重要だと感じました。今回の実習では、仮説を立てる際に有効に使えると実感できたため、今後すぐに引き出せるように知識整理ツールで整理しておきたいと思います。今後触れる新たなフレームワークも同様に蓄積していくつもりです。 仮説思考で未来は変わる? また、仮説を考えること自体に意義があるという新たな視点も得られました。これまでは、漠然と考えるべき時に考えるという認識でしたが、仮説思考を業務に取り入れることで、課題に対するアプローチがより具体的かつ効率的になると感じています。今後は、積極的にこの考え方を意識して、業務改善に役立てていきたいと思います。 課題解決のヒントは? 部署や会社内に存在する課題を、フレームワークを活用して仮説を立てることで、本質的な問題点の抽出や、課題解決に向けた具体的な行動への落とし込みが可能になると考えます。漠然と感じる課題を仮説によって明確化し、実際の状況把握やデータ収集を通じて、もっともらしい原因に絞り込むことが大切です。そして、その原因を排除するための具体的な行動計画へと繋げ、もし課題が解決しなかった場合には、新たな仮説を立て行動に移すというプロセスを繰り返すことで、問題解決へと導くことができるでしょう。

戦略思考入門

多様な意見を取り入れつつ、自社の価値観を貫く方法

柔軟な思考をどう育む? 戦略を立てる上では、思考様式やツール(フレームワーク)の知識を基礎としながらも、多くの知識と他者の多様な考えに触れることで得られる柔軟な思考や発想が重要だという点が印象的でした。しかし、一方で、それらの多くの知識が逆に足かせとなったり、他者の考え方から悪影響を受けないように、自社の経営方針や価値観を判断の拠り所とすることも常に意識する必要があると感じました。 情報収集と分析のポイントは? 今週の学習内容とは少し異なりますが、事業計画の策定においては、できる限り多くの情報を収集し分析することが求められます。その際、「①自己の都合の良いように解釈したり、拡大解釈しない」ということと、情報や分析結果を基に戦略を立案する際に「②自社のMVV(ミッション・ビジョン・バリュー)との整合を取る」ということが重要だと思います。 まず、①については、自身の出した結論に対する論理を明文化して、他者に意見を求めるという流れを基本的なプロセスとして進めることが肝要です。 MVVと戦略の整合性を保つには? 次に、②については、MVVを日頃から目に触れる場所に掲示したり、作成するドキュメントに盛り込むことが有効です。また、レビューチェックシートにチェック項目として設けるのも良い方法かもしれません。これにより、常に自社の価値観や目標を意識した戦略策定が可能となります。

アカウンティング入門

学びで磨くビジネス感覚

事業コンセプトは何だろう? 事業や商品のコンセプトの重要度を再認識することができました。お客様にどのような価値を提供するかを考えたとき、魅力を高めるために売価を上げて儲けを追求する方法と、細かいコストダウンによって売上を伸ばす方法のどちらにするか、また、魅力とコストのバランスをお客様のニーズや企業側のコンセプトに合わせて調整する必要があると感じました。さらに、他企業との差別化についても、しっかりと考えるべきだと思いました。 チームの合意はどうなる? 普段の業務においては、商品開発でコンセプトを明確にし、チームメンバーに説明することで共通の理解と共感を得ながら目的に向かって進めることが大切だと実感しています。また、魅力とコストのバランスを考慮しながらチーム内でディスカッションを行い、合意を得て業務を進めることが必要です。同意が得られないまま業務を推進すると、結果として気持ち良く進められず、アウトプットの質や量が低下する恐れがあるため、必要な情報・知識の収集と、説明能力の維持・向上に努めるべきだと考えています。 情報収集の方法は何? さらに、ビジネス情報の収集を目的として、定期購読しているビジネス誌から気になる事柄をリストアップし、社内のミーティングやチャットを通じて情報発信を行っています。また、学び放題のサービスを活用し、幅広いニュースにも目を通すようにしています。

データ・アナリティクス入門

復活!フレームワークで変わる仮説力

3Cや4Pの知識はどう? 3Cや4Pの考え方については、以前どこかで聞いた記憶があったものの、すっかり忘れていたため、改めて学習することができた点が良かったと感じています。 仮説設定に課題は? もともと、ゼロから自分で仮説を立てることが苦手で、仮説を作る際の効率が悪く、精度も不足していました。しかし、フレームワークを活用することで、要点を整理しやすくなり、情報の捉え方が明確になったと実感しています。また、仮説を構築する際には、以前学んだMECEの考え方が非常に役立つことも再認識しました。 クロージングの秘訣は? 内定者へのクロージングの際には、他社との差別化や意向を高めるために仮説を立て、対策を組み立てる必要があります。現在持っている情報から、何を伝えれば意向が上がるのか、また、さらに追加でどんなヒアリングが必要かを仮説を通して見極めながら情報収集を行っています。 比較分析はどんな感じ? また、内定者向けのクロージングに際して、自社と競合他社を比較するための型、例えば比較表のようなツールがあると、仮説立案がよりスムーズになると感じています。転職時に比較される要素を3Cや4Pのような形で整理し、どの部分で自社が優位に立っているか、逆に他社が優位または情報不足となっているかが一目で分かれば、クロージングのための具体的な対策を立てやすくなるでしょう。

データ・アナリティクス入門

在庫の謎、仮説でスッキリ解決!

分析フレームはどう使う? 分析の実施に際して、講義ではプロセス、視点、アプローチという3つのカテゴリに分けたフレームワークが紹介され、シンプルなモデル化が印象的でした。仮説思考のプロセスは「目的の把握」「仮説の立案」「データ収集」「検証」の4段階に分かれており、分析に必要な視点として、インパクト、ギャップ、トレンド、ばらつき、パターンの5つが挙げられました。また、具体的なアプローチとしてグラフ、数字、数式の3つが提示された点も理解の助けになりました。 クライアント事例を深掘り? 現在、あるクライアントから依頼をいただいている基幹システムと倉庫管理システム間の在庫差異に関する分析支援に、本講座で学んだ内容が活かせると考えています。ロケーション、保管場所、品目、品目タイプ、システム、オペレーションなど、複数の要因が複雑に絡み合いながら在庫状況に時間的なずれを生じさせているため、講義の知識が問題解決の一助になるのではないかと思います。 差異分析の視点は? また、Q2で実施している活動において、差異分析のプロセスの意識づけに講義内容を活用できると感じました。オペレーション履歴の抽出や、過去3カ月分のデータを用いた分析の中で、ばらつきやパターンという視点が特に重要であると実感しています。そのため、今回学んだ相関関係を意識した分析手法が有効に働くと考えています。

データ・アナリティクス入門

データで解き明かす!仮説立案の極意

仮説の種類と意義を知る 仮説とは、ある論点に対する仮の答えのことを指します。仮説には目的に応じて「結論の仮説」と「問題解決の仮説」がありますが、その中でも仮説は様々なフレームワークを用いて複数用意する必要があります。検証方法としては、データ収集が重要であり、目的対象を検討した上でアンケート調査や口頭調査を行うことが有効です。 打ち手を選ぶ際のフレームワーク活用法は? 業務に活用できる場面としては、打ち手の検討があります。問題解決のためにどの打ち手が効果的かを考える際には、フレームワークを用いてどこに効果があるかを検討することが求められます。ブレインストーミングから打ち手を選定する際にも、枠組みから検討し、その打ち手の効果測定や仮説作りのためのデータ収集が必要です。 フレームワークで複数視点を持つには? 複数の仮説を持ちながら物事を検討することは重要です。フレームワークを活用することで、様々な視点から会議に参加する準備が整います。そのためには、フレームワークの知識を習得し、何が論点になっているのかを正確に確認することが必要です。 データ検証の質を高める手法 データ検証の項目を洗い出す際には、目的が曖昧なままアンケート調査を行うのではなく、目的を明確に定め、それに沿った項目や枠組みを検討しながら実施することで、質の高い結果が得られます。

「知識 × 収集」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right