データ・アナリティクス入門

4視点で読み解く問題解決のコツ

情報収集の課題は? 収集したデータは、そのままでは問題解決に活かすことが難しいと感じました。なぜなら、目の前にある情報に左右されやすく、都合の良い情報だけを集めて判断が偏ってしまうリスクがあるからです。 問題整理の手法は? また、【What】【Where】【Why】【How】というステップで問題解決を整理する考え方は、非常に効果的だと実感しました。これはデータ分析に限らず、さまざまな事象を体系的に整理する上で役立つ手法です。たとえば、製品企画や業務提案に取り組む際、どの切り口からアプローチするかの起点となるため、有用だと感じました。 提案の差はどう? 最近の新しい業務提案にあたっても、同様に【What】【Where】【Why】【How】で整理する必要があります。ただし、提案内容が【How】だけに偏ってしまう傾向があるため、MECEを意識して全体をバランスよく整理することが重要です。さらに、金額(HowMuch)や期間(HowLong)といった具体的な要素も含めて考えることで、より実践的な問題解決が可能になると感じました。

マーケティング入門

マーケティングの新発見:日常にも応用可能な学び

楽しんだ6週間の学習 6週間の学習期間は当初考えていたよりもずっと短く感じ、久しぶりに楽しみながら学べたと思います。今週、これまでの6週間分の学びを振り返ってみると、すでに忘れてしまっていることが多々ありました。学んだ内容をさらに定着させるために、自分の言葉でまとめて記録し、いつでも振り返りができるようにしています。 日常で使えるマーケティング? 業務とは異なる内容の講座だと思いながら受講を始めましたが、実際には顧客の位置づけにより、マーケティングの考え方が非常に汎用性が高く、日常に応用できることを実感しました。たとえば、社内の他部署や取引先に対して、自分の提案がどれだけ魅力的なのかを意識してコミュニケーションをとることができます。 顧客の欲求をどう伝える? 学んだ切り口—顧客の欲求、ポジション、魅力の伝え方、価値とは何か—の中から、最適なものを選び、実験的に使い分けながら実践していきたいと思います。実際に試行錯誤する中で失敗もあるかもしれませんが、その経験を通じて、自分なりのスタイルを作り上げていきたいです。

戦略思考入門

学びを体感!戦略が日常に息づく

講座と出来事は何を示す? この6週間を振り返ると、講座そのものだけでなく、周辺で起きたさまざまな出来事が大きな示唆を与えてくれたことが印象的です。人事制度の案件ではOODAループを実践する機会があり、『デス・ストランディング2』では戦略的思考を疑似体験しました。同時期に学んだ社会学は、自分の思考体系を整理するきっかけとなり、これらの事象が講座と呼応し合うかのように、自己変容を促進してくれたと感じています。 学びの相乗効果は何? また、一定期間テーマを決めて取り組むことで、他の事象の見方も変わり、学びが相乗効果的に深まることを実感しました。短期間に集中して学ぶnano講座は、知的刺激の触媒として非常に魅力的な形式であると感じています。 次はどの分野に挑む? 講座で鍛えた戦略的な思考は、次に取り組むテーマ選びにも活かされると考えています。講座が一区切りした今、自分の業務状況やキャリアの方向性を踏まえながら、次の学習対象として「アカウンティング」と「交渉術」のどちらに取り組むか、戦略的に検討していきたいと思います。

クリティカルシンキング入門

データ分析で見えた成功と失敗の違い

真因分析の切り口とは? 真因を分析するためには、複数の切り口で分析する必要があります。切り口は、仮説を検証するために適した分け方であるかを事前に確認し、単純に分けるのではなく、目的を明確に設定しなければなりません。仮に仮説が立証できなくても、それは失敗ではなく、仮説が間違っていたことを発見できたと前向きに考えるべきです。 業務の違いはどこに? 私は日常業務で、結果が出ている取引先と結果が出ていない取引先の違いを分析しています。これまでとは異なる切り口を増やして分析を行いたいと考えています。例えば、店主の年齢、社員数、業務品質の良し悪し、取引高の規模といった要素で分析すると、効率的な行動や指導方法に繋がるかもしれません。 効率的な行動を導く分析手法は? 直近のデータを元に、自走化のレベル分け、販売率、顧客数の規模別に分析し、更に年齢、会社人数、業務品質別に分けて分析を行いました。結果が出ていない層に対しては、一定期間共通の働きかけを実施し、その変化を分析することで、次回の検証に繋げていきたいと考えています。

戦略思考入門

フレームワークで未来を切り拓く

フレームワークの効果は? 学習期間中に習ったフレームワークを意識的に活用することで、設問の意図に気づきやすくなりました。実際、順序立てたフレームワークを用いることで、業務上の戦略が明確な理由に基づいていないことが多い現実に対し、合理的な説明材料を集めて説得に利用できると感じています。 チーム整理はどう? また、時間に余裕がある案件に対しては、大局的な視点から整理する習慣を日常業務で意識するよう努めています。自チームのみならず、関連する部署全体を含めた整理を行うことで、より適切な対応や戦略が立てられると実感しました。 未来計画の鍵は? さらに、次の会計年度の業務プランや方針を検討する際には、PEST分析などの大局的なフレームワークを活用して、効率的に整理し方針決定に役立てたいと考えています。特にTechnology分野では、生成AIの進化と社会への浸透がもたらす既存業務の移行リスクが大きな課題となっており、このリスクを機会として捉え、どのような戦略や対策が最適かを探求することに意義を感じています。

データ・アナリティクス入門

データ分析で役立つ具体的アプローチ

分析の流れをどう把握する? 分析とは、目的、仮説、問い、そしてデータ収集・加工を行うという流れをきちんと把握することが重要だと感じました。また、インパクト、ギャップ、トレンド、ばらつきなどの各因子を鑑みたうえで数値を見ていくことが必要であると理解しました。 代表値の注意点とは? 何かとすぐに飛びつきがちな代表値の中でも、特に単純平均値には注意が必要です。業務では、サイト流入数や売上など様々な数値を見る機会が多いため、一つの代表値だけでなく、多様な代表値を目的をもって算出したり、散らばりを意識した分析を行いたいと感じました。 データ収集のポイントは? 日次、週次、月次など期間を定めた上で、数値の意味を考えたデータ収集や分析を行うことが重要です。過去のデータを活用しながら自分なりの仮説を立て、今回学んだフロー(目的→仮説・問い→データ収集→検証)を実施していきたいです。また、インパクト(重み)、ギャップ(差異)、ばらつき(分布)といった視点を意識しながら、数値の意味を考えていきたいと思います。

マーケティング入門

学びが広がる!マーケティング思考の醍醐味

学びの重要性をどう実感したか? 学習期間を通じて、実例を用いて考え、自身の身の回りに落とし込み、他者とともに考えること、小さくともアウトプットすることの重要性を非常に実感しました。これらの取り組みは、非常に有効であると感じました。 マーケティング思考の魅力とは? また、マーケティング業務そのものが経営思考的であり、ビジネスロジックとしても非常に面白いと実感しました。 キャリアにおけるマーケティングの活用 自身のキャリアを考える際やメンバーのキャリアを考える際、転職や異動の際にもマーケティングの知識が有用であることを感じました。そのため、更なる活用のためには、他分野の学びも継続してブラッシュアップしていく必要があると感じています。 次のステップは何を目指す? 具体的な次のステップとして、ナノ単科の他講義受講を検討中です。また、企業のマーケティング実例を検索してマーケティング思考を試したり、学び放題のマーケティングやキャリア戦略関連の動画も9月中に1本は視聴したいです。

データ・アナリティクス入門

偏見を超えるデータの力

バイアスはどう捉える? データ分析を学ぶ中で、ただ数値を扱うのではなく、自己のバイアスを取り払い、タスクに合わせてニュートラルな視点に切り替える大切さを実感しました。このような状態で、高い専門性と比較するスキルを活かし、データから具体的な仮説を立証できると理解しています。 セキュリティは大丈夫? 社内で広くデータ分析を利活用するためには、堅牢なセキュリティ基盤とデータ基盤の構築が不可欠だと感じます。編集機能やデータ閲覧機能を適切に制御しながら、データウェアハウスを運用することで、業務に活かすための取組みが一層進むと考えています。 AI応用はどう進む? さらに、データアナリティクスを深く理解するために、4月から9月までの期間を通じて学習を進めるとともに、生成AIを取り入れたデータ分析への応用も視野に入れています。データウェアハウスから得られる結果や知見を、プログラムを通じて読み解くスキルの習得が、今後の発展に大いに寄与すると感じています。

データ・アナリティクス入門

仮説と比較で見える成長の軌跡

A/Bテストの見直しは? 業務において、あまり考えずにA/Bテストを実施していたことに気づきました。今後は、企画段階からバイアスを取り除く方法を模索し、比較のためのベースラインを整えることに留意したいと考えています。仮説に基づいてどのように探索を進めるかが鍵となり、改めて分析は「比較」が非常に重要であると実感しました。 フレームワーク活用法は? また、これまで学んだフレームワークや考え方(3C、4Pなど)を積極的に取り入れていきたいと思います。習得がすぐにはいかなくても、慣れるまで継続して実践し、しっかりと身に着けていく所存です。 データ分析はどう行う? さらに、A/Bテストを実施する際には、可能な限りランダマイズすることや、比較に必要なサンプル数や実施期間を十分に検討することが重要だと感じました。分析時にも、どのような背景や手法でデータが収集されたのかを意識しながら、より正確な評価を行えるよう努めていきます。

データ・アナリティクス入門

小さな気づき、大きな成長への道

ABテストの条件は? ABテストでは、条件を揃えることの重要性を改めて認識しました。web広告の出稿時、期間は統一していたものの、画像やメッセージなどの要素がバラバラになっていた点は反省材料です。5パターンから2パターンに絞ったときに優位差が出なかったことから、最初から2パターンで検証すればよかったと感じました。今後は、各条件をしっかりとそろえることを最優先に、広告出稿に臨みます。 部下の進捗状況は? 初めてプロジェクトマネジメントに取り組む部下が、全体像の把握に苦労している様子が見受けられます。全体スケジュール表を提出させても、個々の業務に追われ、検討した案を1週間放置してしまうケースが発生し、本人も周囲も内容を忘れてしまったため、再び考え直す必要が生じています。この状況がプロジェクト全体の進捗に影響しているため、今後はプロセスの各段階を理解することを重点的に指導し、円滑な進行を目指していきたいと思います。

データ・アナリティクス入門

平均で解く成長のヒント

各平均の意味は? 今回の学習では、平均の種類について再確認できた点が非常に印象的でした。単純平均だけではなく、幾何平均や加重平均といった、数字の根拠となるデータや分布の理解が求められる手法について、より深く考える機会となりました。 成長率の計り方は? また、期間全体の成長率を表現する方法が実践可能であることを知り、これまで感じていた疑問が解消されました。具体的には、自身の業務において商品のサイズ構成比や部署の成長率を算出する際、全体の加重平均や過去数年の傾向を示すための幾何平均が有用であると感じました。 実践スキルの磨き方は? とはいえ、数式自体は難しく感じたため、今後はエクセルを使用した計算方法など、より実践的なアウトプットスキルを磨く必要があると思っています。プレゼンテーションや説明の際に、根拠となる平均値を具体的なグラフなどで示せるよう、引き続き学びを深めていきたいと考えています。

データ・アナリティクス入門

比較が切り拓く説得力

何を比較する? 「分析の本質は比較である」という考え方を基に、分析を行う際には何を比較の対象とするのかを明確にすることが大切だと感じました。また、比較対象が適切かどうか、つまり条件ができるだけ揃っているかを検討することで、説明する相手にも説得力を持って納得してもらえると考えました。 数値変動の理由は? 商品の活用数値に大幅な変動があった際は、原因分析が必要です。その際、単に昨年度同時期の数値を比較するだけでなく、同期間の環境―追い風か向かい風か―を把握することで、より説得力のある分析が可能になると思います。これらの情報がすぐに確認できるよう、ファクト元の整備も重要だと感じました。 業務経験をどう活かす? 特に疑問点はありませんでした。今後は、皆さんの業務経験を参考にしながら、さらに多角的な観点で分析を深めていければと思います。

「業務 × 期間」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right