データ・アナリティクス入門

アンケート成果を活かすデータ分析術

アンケート設計のコツは? デジタル化を進めるにあたり、今後お客様アンケートを実施する予定があります。今週学んだことを活かして、アンケートの集計に役立てたいと考えています。アンケートには定性的および定量的な質問がありますが、定量的な質問に関しては、単に平均値のみでなく、中央値や最頻値も確認し、傾向やばらつきを把握することが重要です。質問を設計する際には、事前に仮説を立て、それを証明するための最小限の質問を設定することが求められます。 結果報告の工夫は? まずは直近のアンケート業務で学びを実践し、集計後にはそれをもとに報告を行う予定です。その際には、結果をどのようにビジュアル化して示すかを考慮します。単純に平均値や最も多い回答を示すだけでなく、仮説に基づいたアンケート設計により、得られた結果から示唆を引き出し、それに基づいて施策をストーリーとして検討することが大切です。

データ・アナリティクス入門

全体像から磨く問題解決術

今週の学びは、以下の2点です。 問題解決の手法は? まず、問題解決のフレームワークである「MECE/もれなくダブりなく」を徹底的に磨くことの重要性を感じました。この切り口で問題や課題に取り組むと、全体像の解像度が格段に上がるという実感があります。 問題の特定方法は? 次に、最初に問題を正確に特定することがポイントであると学びました。最初の当たりがずれてしまうと、その後の原因分析や課題解決の方向性にも影響が出るため、問題や原因が的確に把握されているかを常に確認する必要があると感じています。 対策の基準は? また、これらは業界や具体的な問題解決の種類を問わず、普遍的なスキルであると理解しています。日常業務では他者の解決策を参考にする機会が多いですが、それぞれの対策が正確に特定された問題とその原因に合致しているか、今後も意識して確認していきたいと思います。

戦略思考入門

直感を数値に変える仕事術

業務整理の意義は? 日常生活で定期的に断捨離を意識しているように、業務においても効率を考慮しながら不要なものを整理してきました。基本的には、利益が少なく工数がかかるものを捨てる判断基準として検討していたものの、感覚に頼っていたため、他の業務と比較しているとは言い難い点に気づきました。 新業務の疑問は何か? また、私自身は異動が多いため、新しい業務をゼロから学ぶ機会が多くなります。その際、業務を進める上で常に「なぜそれが必要なのか」「ほかに方法はないか」と自分なりに考え、疑問があれば確認するようにしています。現職では、ほとんどの回答がマニュアルに基づいていたり、前例に従っているため、マニュアルから簡単なフロー図を作ることで、同じ作業を繰り返す中でどこを改善すべきか分かりにくい状況に対し、数字で示すことが説得力を高めるのではないかと考えるようになりました。

クリティカルシンキング入門

会議が迷走しない視覚化テクニック

日常業務における課題意識は? 日常業務や会議において、「何のためにやっているのか」「何が課題であるのか」を忘れてしまうことが多いと改めて感じました。適切な問いを立て、それを押さえ続けながら業務を遂行することの大切さを理解しました。 業務の視覚化が必要な理由は? 業務上の課題に対しては、何が課題なのかを考え、それを明確にしたうえで向き合うことが重要です。しかし、会議などの場面では話がそれることが往々にしてあります。そうした場合、視覚化し、目的がぶれないように周知することが求められます。 プロセスをどう視覚化する? 問いを立て、明確にし、それを押さえ続けること。このプロセスを視覚化し、個人的にもまた他者と関わる仕事の場合には他者にも視覚化し周知することで、目的の達成や業務効率化につながると感じました。実際に実践し、行動に移していきたいと思います。

クリティカルシンキング入門

業務に生かす学びの再発見

業務にどう活かす? 学んだ内容を自身の業務にどう生かすか、真剣に考えるための良い機会となりました。今回の復習を通じて、常に自分自身に問いを投げかけ、この方法や考え方が正しいのかを自問自答する癖を身につけたいと考えています。 提案はどう見直す? また、提案にあたっては、提供価値が適切に整理され、相手の立場からもベストな提案や回答になっているかを意識するよう努めたいと思います。知識はあるものの、業務に落とし込みきれていない同僚も多い中で、私自身が第三者の視点から客観的な指摘を行う役割を担うことも大切だと感じました。 習得はなぜ重要? 総復習の機会を通じ、日常的に学んだことをしっかりと身につけることが重要であると再認識しました。自分なりのフレームワークを確立し、それを業務に定着させる習慣をつけることで、さらなる成長を目指していきたいと思います。

クリティカルシンキング入門

文章力がUPする秘訣を発見!

なぜ文章が大切? 文章の重要性を再認識しました。分かりやすく簡潔な文章は、相手に伝える際に非常に有利です。ピラミッドストラクチャを意識すると、全体が理解しやすい文書を作成することが可能です。日頃から文章を書く練習を重ねることで、スキルは向上します。 必要情報の伝え方は? また、ドキュメント作成業務が多いため、関係するところは大きいです。ハンドブックや技術情報の広報文章などでは、特に必要な情報を正確かつシンプルに書くことが求められます。主語と述語の明確化やトップダウン型の説明は、特に重要だと考えます。 文章力はどう高める? 社内サイトの記事投稿など、文章を書く機会を意識して増やすようにします。その際には、ピラミッドストラクチャを意識しつつ、作成・チェックを行い、日常的に分かりやすい文章を書けるように訓練します。

クリティカルシンキング入門

見える!MECEで課題解決のヒント

MECEとはどう考える? 今週の学びは、MECEの考え方と切り口の作り方についてでした。MECEとは、全体を定義し、もれなく重複なく切り分けることで、目的に沿った視点で事象を分解し、問題の所在を把握する手法です。 どんな切り口を使う? 具体的には、層別分解、変数分解、プロセス分解という3つの切り口が挙げられます。業務改善の課題分析に活用する際、これらの方法を組み合わせることで、従来のプロセス分解のみでは見落としがちなポイントを捉えることが可能になります。 問題解決の糸口は? 従来はプロセス分解で分析を行っていたため、問題点が多い場合にどこから手をつけるべきか迷うことがありました。しかし、まず解決すべき問いを明確にした上で、層別分解や変数分解を取り入れることで、目標に沿った形で課題を整理できると感じました。

データ・アナリティクス入門

ゼロから攻略!知識整理とデータの力

ゼロからどう始める? ケーススタディーに取り組む際、これまでのような指針がない状態でゼロから考えると、どこから手をつけたらよいのか迷ってしまうことが多いと感じました。そのため、どの状況でどの分析手法が有効なのかを再度整理し、自分の知識や経験を明確にしておくことで、このハードルを乗り越えられると考えています。 業務の効果をどう見る? また、日々の業務では求められるKPIの達成に向けたマネジメントが中心となりがちです。その中で、現在の活動が本当に目的に沿ったものであるか、またはより大きなインパクトを与える方法はないか、成功しているチームがどのような行動を取っているのかを考えるようになりました。そこで、データ分析を用いて客観的な視点からその効果を示すことで、より効果的な業務の進め方を模索していきたいと思います。

クリティカルシンキング入門

3つの視点で磨く説明力

どうして視点を変えるの? WEEK1で掲げた「片手落ちでない説明をしたい」という目標について、具体的には「視点を変えて分析ができるようになりたい」という意図が明確になりました。そのために、「3つの視」や定量情報を分解するツールを学び、実際の業務においてもその考え方を実践していく所存です。 どう伝えれば納得できる? 私は、コーポレート部門に所属しており、社内規程や組織設計に関する提案を行うことが多いです。組織設計の変更を提案する際には、経営層、管理職、スタッフという3者のステークホルダーに共通するイシューを抽出し、わかりやすく説明する必要があります。今後は、どのようにイシューを立て、3つのレイヤーに対して効果的に伝えていくかを、視点を変えた分析や振り返りの習慣を通じて磨いていきたいと考えています。

データ・アナリティクス入門

仮説実践!即断で未来を掴む

効果測定は本当に? A/Bテストの実施により、短期間で効果測定が可能であることを実感しました。一方、単にデータ収集に時間をかけるだけでは、必ずしも問題解決には結びつかないということが分かりました。 分析時間は適切? 業務を進める際、初めはデータ分析から始めることが多い中、分析に時間をかけすぎる傾向があると感じています。一定量のデータが得られた段階で、迅速に仮説を設定し、追加の分析が必要かどうかを判断するか、実行フェーズに移行するかを見極めることが重要だと学びました。 行動開始のタイミングは? このコースを通じて、仮説に基づき行動に移すタイミングの大切さを再認識しました。今後は、データ分析に没頭しすぎず、適宜ストップしながら、仮説思考を軸にした実践的なアプローチを心がけたいと思います。

クリティカルシンキング入門

問いが導く未来への一歩

状況把握はできてる? 一般的に、良いとされる施策であっても、現在の状況を正確に把握しなければ、逆効果に陥る可能性があります。まずは自身が置かれた状況をしっかり理解し、その上で核心となる課題を明確に設定し、具体的に何をすべきかを考えることが大切です。 問い意識はしっかりある? また、ただ漠然と物事を始めるのではなく、「問いは何か」を常に意識し続けることが重要です。この姿勢が、より良い結果につながる基盤となると感じます。 新手法に挑戦する? 例年通りの方法に固執し、新しい手法に対するリスクや労力の増大を理由に前例に従うことが多いですが、これまで当たり前のように行ってきた方法に、まずは問いを持つという視点から見直しを加えることで、完成物の質が向上し、業務の効率化にもつながるのではないかと考えました。

データ・アナリティクス入門

データ分析をもっと身近に感じよう

比較分析の考え方とは? 分析とは比較であるという考え方には改めて納得しました。特にビジネスの現場では、目的に応じて分析のアウトプットが変わるため、前提条件の確認を怠らないよう心がけたいと思います。 データ分析の意識法は? 日常業務でデータに触れる機会が多いですが、まずは仮説や問いを立て、目的に沿った分析を意識したいです。データ分析自体を目的とせず、次の提案につながるアウトプットを目指します。 仮説を立てる重要性について 正しい仮説や問いを立てるためには、現状把握や周りとの意見交換を徹底し、怠らないようにします。ビジネスのゴールから逆算してデータ分析を行い、常に目的を忘れないようにします。また、データの整理や可視化についても学び、分析の全体的な流れをスムーズに進められるようにしていきたいです。
AIコーチング導線バナー

「業務 × 多い」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right