クリティカルシンキング入門

データ分析の力で見えない答えが見えてくる

分解という手法を学ぶ 与えられたデータをどのように活用するか、数字を味方にする「分解」という手法を学びました。情報を鵜吞みにするのではなく、手を動かしグラフ化するなどの簡単な工夫で、新たな分析・類推の元となることを再認識できました。 分解のポイントとは? 分解の方法にはいくつかのポイントがあります。基本として、MECE(モレなく、ダブりなく)を目指すこと。そして全体の範囲を明確に定義することで、精度が増すと感じました。層別分解(例:年代別)、変数分解(例:売上=単価×個数、どこが増減したか)、プロセス分解(例:入店⇒退店のプロセスで分ける)などの手法が紹介されましたが、感覚ではなく一つ一つ丁寧に試行錯誤することで、結果に繋がる可能性が広がります。仮に結果が出なかったとしても、その切り口に変化がないという情報が成果としてあり、失敗ではないと認識を新たに持つことができました。 MECEと分解方法の実務応用 業務上、様々な数値を取り扱う機会があります。新規業務のフロー作成時や集計業務、既存のルーティン業務に関しても、MECEや分解方法を意識することで、データの抽出方法が変わると感じました。 ミーティングでの分解活用法 新規業務フローのデータや数値取り纏め方法をMECE、分解方法を意識しながら切り口に変化をつけて分解を繰り返し、現状気付けていない数値の傾向や改善策を用意し、関係各署に意見具申していきます。ミーティングの機会も多いため、事前に議題を確認し自身の提案パートに関してはMECE・分解方法を意識し、他に懸念材料や他の提案方法がないかを模索する癖をつけます。 ルーティン化するための工夫 癖付けを具体的に行うため、項目ごとに分解方法をルーティン化します。まず全体の範囲を定義し、5W1Hで問題点を明文化し、分解方法と切り口を選定、MECEを意識して内容を再確認します。これを最低2往復行います。 方法の変化と学習の進捗 最適解とは思いませんが、反復トレーニングの一環として上記手法を学習期間中に実施し、途中で方法も変えていく予定です。

データ・アナリティクス入門

データ分析で広告効果を最大化する方法

サーチとコンバージョン分析のポイントは? 私は、定量データの処理方法や割合と実数値の使い分けについて学びました。広告のサーチ数やコンバージョン率を分析する際、実数値で成果を示すと共に、全体の成果に対する割合を表示することで、広告の効果がより明確になります。例えば、特定の広告が他の広告よりも高いコンバージョン率を示す場合、その差を強調するために割合を用いることが有効です。 リーチとフリクエンシーの効果的な可視化 データの加工方法や適切なグラフの選び方について学びました。リーチ(到達)とフリクエンシー(接触頻度)のデータをヒストグラムや折れ線グラフで視覚化することで、どの広告が最も効果的なリーチを達成しているか、または頻繁に接触されたが効果が薄い場合の改善点を容易に発見できます。 データクリーンルームを活用するには? 比較の重要性や仮説に基づく分析について学びました。データクリーンルームを活用する際、テレビとデジタル広告の重複接触を比較することで、効果的な広告の配置や接触頻度を見極める仮説を立て、そのデータを基に改善策を提示します。こうした定量的なデータとその適切な比較により、精度の高い分析が可能になります。 これらの学びを基に、分析プロセスの一貫性を保ちながらデータをより効率的に扱い、効果的な広告戦略を提案できるようになりました。 グラフを使ったデータの伝え方 グラフや可視化ツールを駆使することも重要です。データをグラフやチャートで可視化し、関係者にとって理解しやすい形で伝えます。特に、データの割合や実数値を比較する際には、視覚的に分かりやすいグラフを使用することで、複雑なデータを簡単に理解しやすくし、意思決定をサポートします。 どのように分析スキルを向上させるか? さらに、データ分析スキルの継続的な向上を目指します。新しいデータ分析手法やツールを学び、分析スキルを継続的に向上させます。広告業界で使用される分析ツールやシステムに精通することで、より効率的で精度の高い分析が可能となり、業務の成果を高めることができます。

データ・アナリティクス入門

データが語る学びの軌跡

どのプロセスが必要? 分析とは、データ同士を比較する行為であると捉えられます。そして、分析は仮説を立てることから始まり、目的や問いを明確にした上で、仮説設定、データ収集、そしてその仮説を検証するプロセスを踏む、いわば「プロセス×視点×アプローチ」が重要となります. どの視点が有効? 分析における視点としては、インパクト、ギャップ、トレンド、バラつき、パターンの5つが挙げられ、各々の観点からデータを多角的に検証することが求められます。一方、アプローチとしては、グラフ、数字、数式の3種類が存在し、状況に応じた手法の選択が大切です. どの代表値を使う? 数字によるアプローチでは、まずデータの中心位置を示す代表値を注視します。代表値には単純平均、加重平均、幾何平均、中央値などがあり、また、データの散らばりを示す標準偏差などを用いて、他のデータの状態を把握することが重要です。代表値についても、観点により複数の値が存在するため、適切な選定が必要です. 相関はどう読む? さらに、数式化の側面では、「欲しい結果に対して何か効いているか?」という視点で、相関関係を見いだすことができます。ただし、相関が必ずしも因果関係を示すわけではない点に留意しなければなりません. 今後はどう進む? 通常、業務においては年度別の件数や特定分野の傾向を、主に単純平均から読み取っていましたし、どのグラフで可視化するかに対して意識が十分ではなかったと感じます。しかし、今回の学習を通じて、目的を明確にし、どの視点でデータを見るべきか、どのアプローチが最適かということを、1つ1つ丁寧なステップとして考える重要性を学びました。また、相手に説明する際には、ビジュアルを活用することで情報がより伝わりやすくなることも実感しました. 次に何を分析? 今後は、何を分析したいのか、何を知りたいのかを明確にした上で、「代表値」「バラつき」「数式化」の各定義や使用すべき場面を理解し、目的に沿った手法を適切に選択しながら分析を進めていきたいと思います.

データ・アナリティクス入門

ギャップに迫る!本質解明の軌跡

計画と実績はどう違う? 年間利益構造の表を見ていると、大きな数字や計画にない項目に目がいきがちですが、計画値と実績値のギャップに注目し、どの項目がどれだけ影響しているのかを把握することが重要だと感じました。 何を見落としている? また、これまで主体的にHowばかりを考えていた自分に気づかされました。さまざまなアイディアが出やすいからこそ、関係者全員が納得するHowを見出すためには、最初に【What】問題の明確化、次に【Where】問題箇所の特定、そして【Why】原因の分析、最後に【How】解決策の立案というステップを確実に踏むことが大切だと理解しました。 理想と現実は何が違う? さらに、業務でKPIを設定する際に、全国平均に頼るだけでなく、「あるべき姿」と「ありたい姿」という二つの視点の違いに気づく機会がありました。現状の分析で「あるべき姿」に留まるだけではなく、自分自身が描く理想の「ありたい姿」まで意識してKPIに反映させたいと強く感じました。 KPI改善は何から? 健康経営やエンゲージメント向上、女性活躍推進、男性育休推進といった分野では、現状分析、KPI設定、課題解決、施策の立案・実行を数値に基づいて進めることが求められます。いずれの場面でも、【What】、【Where】、【Why】の各視点で問題を正確に捉えた上で、【How】の提案を行うことが不可欠と実感しています。 具体的には、健康経営におけるKPIの見直しとして、まず現在設定しているKPIの現状を確認し、数値やグラフでギャップを明らかにしました。次に、相関するKPIの状況を把握し、どの指標が課題となっているかを明確にしました。加えて、多くのKPIの中から、進捗が思うように進んでいないものや他の進捗を阻むものを特定し、専門家の視点を参考にしながら原因を分析しました。その上で、現行のKPIが適切かどうかを再検証し、「あるべき姿」と「ありたい姿」を改めて確認しました。最後に、課題の原因に対して具体的な解決策を検討し、実行可能な施策へと落とし込むプロセスを実践しました。

クリティカルシンキング入門

思考を広げる3つの視点チャレンジ

具体的表現を目指す重要性とは? ビジネスで目指したいことは、「具体的かつ易しく、わかりやすい文章で語ること」との冒頭の話を聞き、自分がしばしば「抽象的」かつ「キーワード」で説明しがちであると改めて感じました。印象的だった学びは三つです。 まず、①「三つの視」です。これが非常にわかりやすく、「あえて違う自分」を意識することが、多角的な視点で新たなアイディアを生み出す基本的な考え方だと思いました。視点、視野、視座を意識することで、制限を超えた考えを持つことができます。 ロジックツリーをどう活用する? 次に、②ロジックツリーです。思考の偏りを防ぐための便利なツールとして、仕事以外でも様々な状況で使えると思います。ロジックツリーを構築する際にカテゴリー別に整理する作業が思う以上に楽しめました。今後も上手に活用していきたいです。 具体と抽象のキャッチボールを習得するには? 最後に、③具体と抽象のキャッチボールです。この考え方がまだ習慣になっていない中で、次につなげる思考法がわかりやすく提供されました。②と連動するので、これを意識的に取り入れていきたいです。 グループワークを通じて、自分の思考の偏りが理解でき、他者の意見を聞くことで視野が広がりました。アウトプットの重要性を改めて実感しました。 実践的なアプローチとは? 具体的に実践したいことが二つあります。 1. 意思決定時には、多くの関係者に納得してもらえるために「自分への批判的思考」を意識し、三つの視、とりわけ「視野」と「視座」を意識します。これにより、他者にも納得のいく説明が可能になると考えています。 2. スタッフ育成においては、自分の経験だけで指示するのではなく、相手の思考を意識しながら業務を進め、ZOOMなどを活用してスタッフの学びにつなげていきたいと考えます。異なる考え方を意識してスタッフの話を聞き、相手の視点で考えることで、目標達成へと導いていきたいです。 最後に、意思決定時には、頭の中だけで考えるのではなく、一旦書き出して言語化することを心がけます。

戦略思考入門

選択と捨てる勇気で生み出す価値

戦略の選択は? 戦略における選択、つまり「捨てる」ことについて、ITベンダーの営業マンシミュレーションで学びました。個人のリソースには限りがあるため、何をやるか、何を捨てるかの優先順位を付けることが重要だと再確認しました。 判断の軸は? 惰性で業務を進めるのではなく、しっかりとした判断軸を持ち、それに基づいて考える必要があります。優先順位を付ける方法として、定量的なエビデンスに基づいた考え方に加え、ROI(投資対効果)を考慮することも大切であることを新たに認識しました。 視野を広げる? また、個人的な視点だけでは見落としがあるかもしれず、全体を俯瞰できない可能性があります。このため、集合知を活用し、他者と意見交換や相談を行うことが重要だと感じました。 新たな気づきは? 動画で得たその他の気づきとしては、捨てることが顧客の利便性を増す場合があること、惰性に流されないこと、新参者の意見を聞くこと、餅は餅屋に任せることなどがあります。特に、垂直統合からの脱却や外注の活用について学びました。 業務の見直しは? 現在の職務では、効率化・高品質化を中心に取り組んでおり、取捨選択をある程度行っていると認識しています。しかし、実際に引き受ける業務には無駄やムラが含まれている可能性があります。これを選別し、より良い処理方法を見つけるために、今回学んだことを活かしたいと感じました。ただし、人間との関係も大切なので、単に定量的な結果や事実を伝えるだけでなく、依頼者の心情に寄り添った対応が重要だとも感じました。 引き算の意味は? 既存業務や新規業務に対して、足し算だけでなく引き算の視点を持つことを意識します。捨てる選択をしてこなかったので、組織としても個人としても抵抗を感じるかもしれませんが、定量的な数値結果や俯瞰的な視野を持ち、情報共有や提案方法を模索していきます。これらを考慮して、同僚や上司に対して恐れず提案する勇気を持ち続けたいと思います。「それ、無くても困らないのでは?」という問いを自分に向けていこうと思います。

リーダーシップ・キャリアビジョン入門

振り返りで見つける自分の道

過干渉を避けるには? まず、実行段階においては、過干渉にならないことが重要です。想定した結果や成果物がしっかりとできているかを確認し、個人を責めたり犯人探しをするのではなく、構造的な問題を把握するために振り返りを行います。忙しいという理由で振り返りを省略するのはもったいなく、うまくいった点についても「なぜうまくいったのか」を検証することが大切です。 なぜ動機は異なる? また、個々人のモチベーションは異なります。マズローの欲求5段階説や、ある理論、さらに衛生理論など、さまざまな理論を踏まえながら動機付けについて考えることができます。ただし、どの理論にも完全に当てはまるわけではない点に注意しなければなりません。 どうして信頼を築く? 日常の業務の中では、尊重、目標設定、フィードバック、そして信頼関係の構築が欠かせません。たとえば、チャットで「質問よろしいでしょうか?」といった連絡があった場合、まずは「連絡ありがとう」や「質問ありがとう」と返すことで、相手への尊重と信頼関係の構築が実践できると感じています。 どうやって動機把握? また、進捗や成果が思わしくないメンバーについては、それぞれの動機付けの要因を考え、日頃からのコミュニケーションを大切にする必要があります。一方、優秀で自立しているメンバーであっても、モチベーションを見極め、課題がないかやさらなる成長のための視点でコミュニケーションを密に取ることが求められます。 どうして振り返り習慣? こうした取り組みを効果的に進めるため、まずは自分自身の中で、週単位、月単位、あるいはプロジェクト単位での振り返りを習慣化することが望まれます。さらに、週に一度、数十分程度でもフィードバックや振り返りの場を設けることで、目標修正の必要性を確認し、尊重や信頼の構築に繋げることができると考えています。その際、何がうまくいき、何がうまくいかなかったのか、またその理由について、メンバー自身の言葉で考える機会を設け、傾聴の姿勢をもって意見を引き出すことが重要です。

リーダーシップ・キャリアビジョン入門

聞く力が変える職場の未来

本音はどう引き出す? メンバーとの関係性やモチベーション向上のために必要なことが、少しずつ理解できてきたと感じます。ひとりひとりの本音を引き出すためには、まずコミュニケーションを重ね、相手の内面に寄り添う姿勢が大切だと思います。 実行結果を見直す? 実行と結果の振り返りにおいては、まずメンバーに執行責任の自覚を促し、過干渉にならないよう注意する必要があります。計画通りに業務が進み、成果が出ているかを確認するとともに、予期せぬ事態や大きな変化がないかを定期的に見直すことが求められます。万が一不測の事態が発生した場合は、状況の収拾を最優先し、その後、リーダー自身の見落としや構造的な問題を認識し、具体的な改善策を検討することが重要です。 フィードバックは適切? また、効果的なフィードバックを行うためには、メンバーが自己の業務過程と学びを言語化できるよう働きかけ、具体的な事実に基づいて評価することが必要です。良い点と改善すべき点の双方を明確に伝え、改善策は具体的な行動計画として示すことで、次の課題へと繋げることができると感じています。 動機の理解は十分? 加えて、モチベーションは人によって異なり、社会的・金銭的・自己実現といった様々な動機があります。理論的なフレームワークを活用しながら、各メンバーの内面にある動機を理解し、個々に合ったインセンティブを提供していくことが、全体のモチベーション向上につながると考えています。 1on1はどう進める? 会社から積極的な1on1ミーティングの実施を促されている中で、何を伝え、どのように話を進めるか悩んでいましたが、今回の学びを通じてまずは相手の話に耳を傾けることの重要性に気づきました。聞く姿勢を徹底することで、メンバーが自身の考えを整理し、賛同のもと業務を任せられる環境を整えたいと思います。今後は定期的な1on1や適時のフィードバックを通じて、相手の動機を素早く把握し、エンパワーメントの視点から振り返りと改善、そして次なる課題への取り組みを進めていくつもりです。

リーダーシップ・キャリアビジョン入門

リーダーシップと協力の実践記録

目標をどう共有すべきか? リーダーシップの実践ステップとして、最初に目標を明確にすることが特に重要であることを理解しました。まずは、自分自身がその目標の意義に納得できているかを問い直すことが大切です。そのためにも、年初や四半期ごとの全体会議で発表される事業全体の目標を、自分事として真剣に受け止める姿勢を持ちたいと思います。 目標が明確になった後は、メンバーにそれを共有することが必要です。共有することで初めて目標は意義を持ちます。この共有の過程では、エンパワーメントを活用してメンバーの共感を引き出すことが重要です。メンバーを理解し、目標達成と彼らの能力や意欲を結びつける会話を心がけ、目標設定に彼らが参加する機会を設けることが、彼らのコミットメントにつながります。 日常業務でのリーダーシップ? 現在私は、関係者の協力を得る場面が多くあります。これを機に、小規模な日常業務にもリーダーシップの実践を取り入れてみたいと思います。 例えば、半期に一度の社外ニュースレターの作成を今年から担当しています。記事の選定や文言チェックについて関係者の協力を得られず苦労していると前任者から聞いています。私自身はデジタル推進派ですが、紙のニュースレターを送る意義を改めて問い直し、その意義を関係者と共有しようと思います。紙媒体は様々な層に記事を届けるために重要な媒体であり、メッセージをターゲットに効果的に届けるためには紙の利便性があることを認識しました。 エンパワーメントの効果とは? さらに、関係者を動かすためにエンパワーメントの活用を進めていくつもりです。記事の選定では、事業者目線と読者目線の両方を配慮し、選定理由に説得力を持たせます。文言チェックは面倒で先延ばしされやすい作業ですが、文言チェックが遅れると記事送付の遅れにつながるため、その意義を共有し、関係者の状況を理解し合いながら、感情に訴えるコミュニケーションも取り入れていきます。特に関係者が直接関与した活動を記事にする際は、その貢献が多くの人に知られることを強調します。

アカウンティング入門

B/Sで読み解く経営のヒント

B/Sは何を示すの? B/Sは、企業の資金調達と資金の使い道が数値として表れるもので、借入金は設備投資や運営資金として活用できるため、必ずしも悪い要素ではありません。借入金の返済額(利子を含む)を踏まえて、キャッシュ創出を意識する材料としても活用できます。また、ビジネスモデルの違いにより、流動資産や固定資産、流動負債や固定負債、そして純資産のバランスが変化することを理解することが大切です。事業活動の様子がB/Sの数値に現れるため、企業活動とB/Sの関連性を整理しながら分析する必要があります。 負債と資産の関係は? また、1年以内に返済が必要な負債に対し、すぐに現金化できる流動資産が十分にあるか、あるいは固定資産と純資産とを比較して経営の安定性を判断することも重要です。こうしたB/Sの各項目の役割や、ビジネスモデルとの関連に気づき、それらを活用する視点は非常に価値があると感じます。さらに、具体的な活用例について詳細に考えることで理解がより深まると思います。 借入金の活用は? さらに一歩踏み込んだ考察としては、具体的な事例を用いて借入金がどのように重要な役割を果たしたか、また、異なるビジネスモデルでB/Sの数値がどのように変動するかを検討することが挙げられます。たとえば、ある企業では、資金繰りが困難な状況において、経営者からの借入金を長期固定の社債に切り替えることで、法人および個人のキャッシュフローの圧迫を解消し、資金繰りの安定化を図ったという事例があります。このケースでは、借入金を活用した結果、B/S上で負債(流動負債と固定負債)および流動資産が増加したと考えられます。 企業の分析はどう? 最後に、様々なビジネスモデルを探求し、B/Sの分析を通して各モデルの特徴を理解することが、今後のお客様への説明や意思決定に大いに役立つと感じています。月次面談や決算報告の際に、各企業の事業活動と連動するB/Sの状態や変化を定量的に伝えられるよう、日々の業務の中で準備や分析の練習を重ねていくことが重要です。

データ・アナリティクス入門

フレームで切り拓く問題解決

分析で何が分かる? この講義では、業務の問題解決のために「分析」を徹底的に学び、質の高い意思決定スキルを向上させることがテーマでした。分析とは、比較を行うことにより現状を理解する手法であり、問題解決に取り組む際は、まず解決すべき問題を明確にし、状況の全体像を把握する必要があると感じました。 仮説はどう練る? さらに、問題点の仮説を立て、どのようなデータを用意し、どのように加工して何を明らかにするかというストーリーを作ることが重要です。闇雲に分析を進めるのではなく、グラフを活用するなどして、周囲への説明が分かりやすくなる工夫が求められます。 どんな枠組みを活かす? また、今回の講義では様々なフレームワークを活用する手法についても学びました。ロジックツリーを用いてMECEに問題を絞り込む方法、定量分析の視点として何を比較対象にするかやどのグラフを使用するか、さらにデータを平均値や中間値に集約して分析する方法など、具体的なアプローチが紹介されました。相関係数や度数・時系列・パレート分析といった数字に基づいた分析の手法や、3Cや4Pの軸で仮説を広げる方法にも触れ、ビジネスにおける仮説には結論の仮説と問題解決の仮説の二種類があることも学びました。 実践でどんな変化? 私は営業支援の仕事に従事しており、データ分析を通じた得意先への課題解決提案を今後も継続していく考えです。これまで自己流の分析やストーリーの立て方では、汎用性に欠ける面やサポートのしづらさを実感していましたが、本講義で学んだフレームワークや定型の分析手法を取り入れることで、体系的に仕事を進められるようになりました。特に、若手メンバーへのサポートにも大いに役立てたいと考えています。 今後の対策は? ただ、問題解決の4つのステップに対して、それぞれに合った分析手法やフレームワークの整理がまだ十分にできていないと感じています。今後は、皆さんと議論しながら確認する機会を持ち、より深く理解を深めていきたいと思います。

クリティカルシンキング入門

数字の力を引き出す分析の秘訣

データ分析の重要性とは? データに基づいて原因を突き詰めていく際、数値を分解しグラフなどに視覚化することで、傾向が見えてくることがあります。さらに、その数値を分解していくことで、他者に説明する資料としても、表よりもグラフの方が一目瞭然です。 効果的な分解方法を探る 分解の方法としては、"いつ(when)"、"誰が(who)"、"どのように(how)"などがあります。博物館のワークでは外的要因に注目しましたが、そのものの数値自体も分解することが大切です。 発見を得るための試行錯誤が不可欠 切り口や切り方を変えて、いろいろ試してみると違った発見があるかもしれません。キリの良い数字でまとめるのではなく細かく刻むことで、見えてくることがあります。また、段階的に切り口を広げて掘り下げていくことで、新たな発見ができることもあります。様々なアプローチを用いて分析をする結果、データに説得力が生まれます。 分析のプロセスから何を学ぶか? 分析を進める中で、切り口や刻み方によって何も見えてこないこともありますが、それもまた意味のある結果だと言えます。このように色々な方法を試すことが重要です。 実際のデータで見る数字の力 私はあまり数字を扱う業務はありませんが、数字を分析することで見えてくるものがあります。例えば、製品群ごとの売上金額や粗利金額の月別、前年比の比較、契約件数と売上金額の関係性、契約金額と粗利益率の関係などを調べることができます。 優先すべき分析視点とは? これらのデータから、売上低調製品の原因や高粗利商品などの理由を探ることができます。月に一度、売上データを集計し分析を行い、そのデータを基にプレゼン資料を作成します。資料作成の際には、ファクターに基づき数字を視覚化することで説得力のある資料を作成します。 営業活動におけるデータ活用 また、自分の営業活動においてもアポイント数や進捗などを視覚化し、得意先や物件ごとの売上金額、粗利金額などをまとめています。

「業務 × 関係」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right