データ・アナリティクス入門

新発見!数値が語る学びの軌跡

代表値の選択は? 代表値について、どのケースでどの値を選ぶのが適切か、具体的な例を交えて理解できました。これまであまり馴染みのなかった加重平均、幾何平均、標準偏差を正しく認識できたことが大きな学びとなりました。 申し込み数の平均は? イベントの日々の申し込み数を算出する場合、たとえばメルマガなどこちらからのアクションがあるかどうかで数値が変わるため、単純平均ではなく加重平均を使用する方法が適切だと感じました。普段見慣れている数字が大きく変化する可能性を実感しました。 目標設定はどう? 今後は、過去の学習内容を振り返り、まず自分が何を達成したいのかという目的を明確にすることから始めたいと思います。その上で、どの代表値を用いるべきかを検討する必要があると感じています。経験や知識が十分でない部分は、AIのサポートも活用しながら、徐々に自分の中に定着させていきたいと考えています。

データ・アナリティクス入門

グラフが語る数字のドラマ

なぜ数値だけでは足りない? データの羅列だけで比較しても、各数値間のギャップを明確に示すことは難しいと感じました。そこで、統計的手法に沿い、平均値だけでなく最大値、最小値、中央値、最頻値など複数の数値を用いることで、データのばらつきをより具体的に把握できることに気付きました。また、こうした整えた数値データをグラフで視覚化することで、全体の傾向がより分かりやすくなると実感しました。 定性情報はどれほど重要? 実務上の変化を的確に捉えるためには、数値データと併せて定性情報のリサーチが不可欠です。これまでは、物量の精査や曜日ごとの波動を捉える際に平均値や中央値を多用していましたが、異常なオーダーも含めた数値をそのまま資料に取りまとめると、全体の概況が見えにくくなる可能性があります。今後は、日々の実績をもとに異常値を定義した上で、データの加工と分析に取り組んでいきたいと考えています。

クリティカルシンキング入門

MECEで考える提案資料作成のコツ

MECEとは何か? MECEというロジカルシンキングの基本を学びました。この方法は、必要な要素を網羅しつつ重複しないようにする考え方です。そのために、層別分解、変数分解、プロセス分解という3つのパターンがあることを理解しました。 なぜMECEが重要? 営業面で提案資料を作成する際に、MECEを意識することで考慮漏れの無い提案ができ、出直しや再考を防ぎ、より効果的な資料作成に役立てられると考えています。また、トラブル発生時の対策報告でも、この考え方は活かせると思います。 結論にどう導く? これまでは結論ありきで、その根拠のために分析を行っていました。しかし、このプロセスを逆転させて考える必要があると感じています。同じ数字でも視点を変えて分解すれば、見え方が変わるということを意識し、分析結果を複数に増やしていくことで、より説得力のある結論に繋げていきたいと思います。

アカウンティング入門

数字の裏側を探る経営レッスン

各社比較で何が分かる? 総合演習では、各社のP/LやB/Sを比較することで、各項目の割合が異なる理由を業界に照らし合わせながらイメージできるようになりました。また、同じ業界内でもどの部分に注力しているか、つまりアピールポイントが異なる点を改めて認識しました。 計画と現状はどう? 自身の事業についても、P/Lが正しく振り分けられているか確認してみたいと考えています。これまで新規リリースのタイミングでしかP/Lを作成していませんでしたが、当時の計画値と比較して現状がどのようになっているのか、また実際に儲けは出ているのかを確認していくつもりです。 内訳を見直すべき? 現在、事業で使用しているP/Lは単にテンプレ通りに入力しているだけで、納得感が得られていません。今後は、各内訳ごとにその項目がなぜ含まれているのかを正確に把握し、説得力のある説明ができるよう努めたいと思います。

データ・アナリティクス入門

数字から見える学びの世界

データの傾向は見えますか? データはビジュアル化することで多くのことが見えてくると感じています。そこで、まずは業務の件数や週平均、月平均などの数値を確認し、どのような傾向があるのか把握することから始めたいと思います。 年次データのばらつきは? 次に、年単位でのデータをヒストグラムに落とし込み、ばらつきや偏りがあるのかを検証してみたいです。年代ごとの偏りから、ある種のマーケティング施策が影響しているのではという仮説を立てることができ、実践演習で学んだ知識が非常に役立ちました。 平均値の使い分けは? また、単純平均だけでなく、加重平均や幾何平均など、状況に応じた平均値の使い分けが正しい分析につながるということを再認識しました。さらに、数字のばらつきを評価するために、標準偏差のような指標を実際の業務データで算出し、その計算方法や数字の感覚を磨いていきたいと考えています。

データ・アナリティクス入門

グラフで解く学びの秘密

データ表現はどう? 数値だけではバイアスや誤読が起きやすいと改めて感じました。適切な表現方法でデータをビジュアル化することで、データの中身や意味への理解が深まると実感しています。また、幾何平均や加重平均の計算方法を再確認するとともに、有意差95%に関する知識も大きな学びとなりました。 グラフってなぜ大切? 根拠を示したり相手と共通認識をもつためには、グラフやその他のビジュアル表現が重要です。プレゼンテーションで用いるだけでなく、自分自身がデータ内容をより深く理解するためにも、積極的にビジュアル化を活用していきたいと思います。 営業でどう伝える? 今後、営業成績や契約管理など、数値管理が重要な業務において、ビジュアル化は全員の共通認識を促す有効な手段となるでしょう。また、営業現場においても、説得力を高めるために、数字とグラフの可視化をうまく活かしたいと考えています。

アカウンティング入門

バランスシートで読み解く未来

B/Sで企業の心は? B/Sは、P/L以上に企業の方針やトップ、経営陣の思いが反映されていることがわかりました。単なる数字として捉えるのではなく、これからはB/Sから企業の姿勢や未来を読み解けるようになりたいと感じています。 注力分野はどこ? B/Sを読み解くことで、自社がどこに力を入れているのか、またこれからどの分野に注力しようとしているのかを明確に理解できるとともに、自社のお金の使い方や調達方法を把握し、どのように仕事をアピールしていくかのヒントにもなると考えています。 B/SとP/Lの関係は? まずは自社のB/Sをじっくりと読み解き、資金の調達先や使用先を明示的に捉えることで、自社の現状をさらに深く理解していきたいと思います。その過程で、B/SとP/Lの関係をしっかりと把握し、後には他社の動向や戦略も学びながら、経営を多角的に捉えていきたいと感じています。

データ・アナリティクス入門

データ分析でビジネスを変革する方法

「分析の目的」をどう明確化する? 分析のポイントを誤ると意味がなくなるため、「何のために」「どの部分を」分析するのかを明確にする必要があります。数字を見る際には、その意味がはっきり理解できなければなりません。特に知識がない人にもわかりやすい数字の提示の仕方が重要です。 ビッグデータ活用の効果とは? ビジネスにおいて、数字はある程度の説得材料となり、クライアントにとっても理解しやすいものです。ビッグデータを活用して根拠資料としてクライアントにわかりやすく伝えることができれば、分析の意義は高まり、ビジネスチャンスも広がります。 分析力を高めるステップ まずは分析の基礎を固めることから始め、目的や意図を明確にすることで分析力を身につけます。それにより、根拠のある資料を作成しクライアントに明確性をもって伝達できるようになり、結果としてビジネスチャンスも広がるでしょう。

アカウンティング入門

ビジョンを支え、数字で攻める学びの旅

ビジョンと数字の関係性は? P/LやB/Sにおいて、数字の良し悪しや本質を理解するためには、ビジネスのビジョンやコンセプトをしっかり把握しつつ、数字と突き合わせて見ることが重要であることが理解できました。また、定期的なグループワークや他者との対話の有効性も再認識しました。 次なる学習計画は? 次の事業計画に向けて、自社・他社のP/LやB/Sを参照しながら学習内容を咀嚼し、理解を深めたいと思います。この学習の一環としてアカウンティングのさらなる理解を深めるために、独学での学習を計画しています。 簿記3級取得への道のり 具体的には、年内に簿記3級を取得することを目標に、8月中に学習プランを立て、9月から段階的な学習を実行する予定です。また、ビジネス側へのアカウンティングの活用についても、今回の学習を振り返りながらOJTで知識をリマインドしていくつもりです。

アカウンティング入門

数字の向こうに広がる学びの世界

利益の要因は何? P/Lを分析する際には、まず財務の視点から利益を押し下げる要因が何かを明確にすることが重要です。具体的には、売上原価、販管費、営業外収益など、各項目がどのように利益に影響を与えているのかを検証しています。 ビジネス観はどう? また、単に数字を追いかけるだけではなく、自社のビジネスモデルや価値観と照らし合わせ、P/Lの内容がコンセプトに合致しているかどうかも考慮する必要があると理解しました。 変動を見るポイントは? 毎月、P/Lを確認する中で、一時的な大きな変動や長期的な傾向を把握することにも力を入れています。その上で、売上原価や販管費の構成が自社の理念に適しているかを詳細に分析しています。 意見交換の意義は? こうした分析結果をもとに、財務部門や経営層と意見交換を行うことで、より実践的な経営判断につなげることができると感じました。

データ・アナリティクス入門

数字が語る成功への道

分析と代表値の使い道は? 分析の基本プロセスや代表値の種類について、非常にしっかり理解できています。実際の案件分析やKPIの見直しにおいて、売上、利益、譲渡額、成約期間など、各データのばらつきに応じて単純平均、加重平均、中央値などの代表値を使い分けることができています。また、ばらつきや2SDルールなども活用し、最適な視点からデータを分析している点が印象的です。 説明とKPIの関係は? 現状、データ分析の結果に基づいてKPIが作成・発信されているため、今後はその数値が目標となる理由を、メンバーがより納得できる図表を用いて可視化し、説明できるようにしていきたいと考えています。同時に、分析のプロセスにおいて、目的の明確化、仮説の設定、データ収集、そして仮説(ストーリー)の検証の手順を、メンバーが理解しながら適宜視点とアプローチを選択できるよう指導していく所存です。

データ・アナリティクス入門

ステップで変わる!問題解決力の磨き方

ステップを踏んで考える重要性 分析する際には、大きな点だけに焦点を当てず、ステップを踏んで考えることが重要です。ロジックツリーを活用することで、大きな問題を細分化して俯瞰できます。この手法により、自分だけでなく他の人も問題点を理解しやすくなり、様々な角度から物事を捉えられるようになるでしょう。 「なぜ」にとらわれない方法とは? 「なぜ」に注目しがちですが、大きな問題を細分化して捉えることで、複数の解決策を見つけることが可能です。ビッグデータの中から、どの数字を分析対象にするかを目的から逆算して決定することが必要です。 ビッグデータ分析の始め方 まずは、ビッグデータを理解しましょう。そこから目的を定め、分析すべき数字を選びます。ロジックツリーを利用して異なる方向からのアプローチも試みると、違う視点から全体を見渡し、新たな発見が得られるかもしれません。

「数字」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right