データ・アナリティクス入門

MECEで広がる分析の新境地

MECEの理解を深めるには? MECEの考え方は非常にわかりやすく、理解することができました。これまで要因解析に活用していたロジックツリーを、別の目的の分析にも使えると知り、非常に驚きました。また、売上を単価と数量に分けて分析する方法も、実践しやすく感じました。 数字の分解で深掘り分析 要因分析では、数字を分解して深掘りすることが広く応用できると考えています。MECEをフレームワークとして理解したので、実際に分析する際には層別が漏れなく、重複がないかを図示して見える化し、確認していきます。 精度向上を目指す次のステップ 定性的な要因分析も含めて、まずはロジックツリーを実際に描いてみることから始めます。その上で、MECEの観点で層別が適切にできているかを図を用いて確認し、分析の精度を向上させたいです。また、これらの図を使って関係者と共有し、レビューすることで、より精度アップを目指します。

クリティカルシンキング入門

問題解決力で未来を創る!

どんな問いを立てる? 問題を明確に把握するためには、「問いは何か?」を起点にすることが重要です。問いを残し、それを意識し続け、組織全体で共有して方向性を統一することの重要性を学びました。また、データ分析では、データを加工し、数字を視覚化することで効果を高めることができると感じました。 論理枠組みはどう? 来年に向けた社内イベントや研修の企画書を作成する際には、今回学んだMECEやピラミッドストラクチャーを活用して、どこに問題があるかを特定し、論理的な枠組みを構築したいと考えています。これにより、主張を適切な根拠で支えられるようにしたいです。 根拠共有は十分? 来年度の社内イベント、特に新入社員プログラムの計画案を立てる際には、今年の結果を振り返りながら、アンケート結果を基に問題を特定し、プロジェクトチーム内でその情報を共有してしっかりと根拠づけを行っていくことを目指しています。

アカウンティング入門

数字が語る企業の物語

会社の実態はどう見える? 実際の会社の財務諸表を確認することで、企業の実態がとても具体的にイメージできるようになりました。業界や企業によって資金の使い方や投資のアプローチが大きく異なる点が非常に興味深く、今後もさまざまな業界の財務諸表に触れてみたいと思います。 数字は語り足りる? また、財務諸表を閲覧する際には、数字だけではなくそこに込められたストーリーを想像しながら読み解くことで、その会社の内情を多く引き出すことができると実感しました。今後は、この視点を活用して、客先の資料にも役立てていきたいと考えています。 業界の違いはどう? まずは、業界ごとにどのような特徴があるのかを比較しながら、財務指標や資金の流れを理解していきたいと思います。各業界でのお金の使い方を把握することで、異なるパターンを示す企業に対して、何か新しい動きや意図があるのではないかと気づけるようになると感じています。

データ・アナリティクス入門

分析の裏側が開く未来への扉

なぜ生存者バイアスが起こるの? 思い返すと、分析に取り組む際に生存者バイアスの影響を受けていることがあったと感じています。既存の情報に頼るだけではなく、分析の目的や対象をしっかり整理することが、正確な分析と信頼できる情報提供につながると実感しました。 データの見方はどう? 現在の業務では、既存のデータをまとめて数字や報告資料にすることが主ですが、そのデータから得られる考察や予測も盛り込みたいと考えています。さらに、現状のデータだけに頼らず、より良い分析のために不足している情報や、精度を高めるためのデータ収集方法についても検討する必要があると思っています。 どう全体を俯瞰する? また、前月の稼働状況を報告する際、これまで前月と先々月の比較に終始していましたが、今後は全体を俯瞰する視点と詳細に注目する視点の両方を取り入れ、将来の予測や考察も盛り込んだ報告ができればと考えています。

データ・アナリティクス入門

データが照らす改善の道

ABテストの意義は? ABテストを通じて、単にAかBを選ぶのではなく、前提条件を統一した上で比較・検証することが次の施策につながると感じました。問題のある箇所については、プロセスごとに分解し整理することが大切だと改めて認識しました。 数字で何が分かる? また、具体的な数字を取得することで、試行した打ち手がどのような効果をもたらすかを明確にしたいと思います。サイトに限らず、アンケートなどを活用して課題を抽出し、想定される項目のほかに自由記述も設けることで、定量データとして予想外の回答が得られるかどうかを確認できる工夫が必要です。 FAQ改善の狙いは? 業務面では、FAQサイトの問題箇所を特定し、改善案に基づいた比較テストを実施することが重要です。過去のPV数などのデータを把握し、変更後の数値の変化を確認することで、PDCAサイクルを効果的に回していきたいと考えています。

戦略思考入門

数字から実感!気づきのプロセス

グラフはどう読む? 数字やデータから読み解く力が不足していると実感しました。これまではグラフを見て理解したつもりでしたが、複数のグラフを組み合わせて考察する力が足らず、物事が前に進まなかったのです。どのようにグラフを読み解けばよいのかが分からず、自分でグラフを作る段階から学ぶべきかどうかすら不明でした。 消費者視点はどうなる? モノづくりではなくコトづくりの仕事をしているため、グラフの読み解きに苦労しました。しかし、モノを作るクライアントやコンサルタントから商品の消費者目線での座談会開催を依頼される中で、モノづくり側の視点にも少し理解が及びました。 制作過程はどう理解? 消費者目線では金額の高さや安さが購買の決定要因とされがちですが、どのような過程で商品が作られたのか理解することも重要です。そのため、事前のヒアリングで制作の過程などを詳しく聞いておくことが大事だと感じています。

アカウンティング入門

PLから読み解く経営方針の秘密

経営方針はどんな意味を持つ? ビジネスの経営方針がPL(損益計算書)の数字とどのようにリンクしているかを理解しました。営業方針によってPLの数字が変わるため、数字から営業方針を読み取ることもできますし、逆に経営方針からPLを考察することも可能です。この考え方を学ぶことができました。 PLは何を示している? 企業の事業を考察し、どの部分でバリューアップの余地があるかを考える時に、PLは非常に参考になります。PLの数字を読むことで、具体的な施策を考えるベースが作られます。また、経営方針が数字にどのように反映されているかを解釈できると、意思決定にも役立ちます。 有価報告書で何がわかる? さらに、企業の有価証券報告書を読むことで、PLと経営方針の両方を知ることができます。興味のある企業の有価証券報告書を読んで、様々な業界や企業の違いを学ぶことで、学びを深めることができると感じています。

クリティカルシンキング入門

MECEで探る増収減益の謎

基本理解の鍵は? MECEの基本的な考え方を理解できたことが良かったです。特に、基本となる3つの分け方についても学び、多くの知見を得ることができました。 増収減益の原因は? 現状の課題は増収減益です。原価上昇に対して売価設定が追いついていないのか、リカバリーにかかる費用が過剰なのか、またはお客様の要望が厳しく対応が後手に回っているのかなど、各フェーズで様々な視点から原因を探っていきたいと考えています。 数字分解の要点は? 今ある数字を分解するときは、MECEを意識することが重要だと感じました。このロジックを繰り返し行い、確実に身に着けるためには反復が必要です。 改善策の展望は? 来週の営業会議では、増収減益の原因を分析し、改善策を提示する予定です。そのため、今週中に必要なデータを整え、土日に詳細な分析を行い、週の前半には問題の特定と改善策の検討を済ませたいと思います。

データ・アナリティクス入門

数字で読み解く現場の真実

記述統計量はどう見る? 平均値だけでなく、中央値、標準偏差など他の記述統計量を抽出することで、データのばらつきまで確認できる方法を学びました。この手法は、問題解決の際に誤った仮説を課題と認識しないための一助となります。 現状指標の見直しは? 現在の職場では、平均値、最大値、最小値のみが共有される指標となっているため、今後はQ1で述べた内容も加えて集計を行いたいと考えています。数値だけでは状況が把握しにくいこともあるため、ヒストグラムや散布図などのグラフを活用し、視覚的に理解しやすい資料作成を目指します。 実績可視化をどう進める? また、FY24の実績値集計においては、ヒストグラムや散布図を用いて数値を分かりやすく可視化する計画です。具体的な項目としては、電話数と業務歴、トスアップ数と金額、トスアップ数と受注額、さらにはトスアップ数と年度内受注率の関係性を検証していく予定です。

アカウンティング入門

数字で見つける経営の物語

数字で見る変化は何? 数字から課題を読み解くことで、ビジネスモデルの改善に繋がる具体的な手法を理解できました。以前は無機質だと感じていた損益計算書が、実は有機的な活動の結果として表れていることに驚かされ、経済活動への興味が一層深まりました。 多角的比較は意欲? また、販管費率や売上原価の比較はもともと行っていたものの、他業種と相対的に見ることへの抵抗感が薄れました。特に海外展開している同業他社の各エリア別の業績比較を通して、国ごとの現状を詳しく分析してみたいという意欲が湧いてきました。 決算で理解を深める? さらに、公開されている各社の決算報告や自社の過去実績を再確認することで、より深い理解を得たいと考えるようになりました。加えて、決算報告をじっくりチェックする中で、気になる企業の株式購入も検討するようになり、普段の生活での視点に変化が生まれたと感じています。

データ・アナリティクス入門

新発見!数値が語る学びの軌跡

代表値の選択は? 代表値について、どのケースでどの値を選ぶのが適切か、具体的な例を交えて理解できました。これまであまり馴染みのなかった加重平均、幾何平均、標準偏差を正しく認識できたことが大きな学びとなりました。 申し込み数の平均は? イベントの日々の申し込み数を算出する場合、たとえばメルマガなどこちらからのアクションがあるかどうかで数値が変わるため、単純平均ではなく加重平均を使用する方法が適切だと感じました。普段見慣れている数字が大きく変化する可能性を実感しました。 目標設定はどう? 今後は、過去の学習内容を振り返り、まず自分が何を達成したいのかという目的を明確にすることから始めたいと思います。その上で、どの代表値を用いるべきかを検討する必要があると感じています。経験や知識が十分でない部分は、AIのサポートも活用しながら、徐々に自分の中に定着させていきたいと考えています。

データ・アナリティクス入門

グラフが語る数字のドラマ

なぜ数値だけでは足りない? データの羅列だけで比較しても、各数値間のギャップを明確に示すことは難しいと感じました。そこで、統計的手法に沿い、平均値だけでなく最大値、最小値、中央値、最頻値など複数の数値を用いることで、データのばらつきをより具体的に把握できることに気付きました。また、こうした整えた数値データをグラフで視覚化することで、全体の傾向がより分かりやすくなると実感しました。 定性情報はどれほど重要? 実務上の変化を的確に捉えるためには、数値データと併せて定性情報のリサーチが不可欠です。これまでは、物量の精査や曜日ごとの波動を捉える際に平均値や中央値を多用していましたが、異常なオーダーも含めた数値をそのまま資料に取りまとめると、全体の概況が見えにくくなる可能性があります。今後は、日々の実績をもとに異常値を定義した上で、データの加工と分析に取り組んでいきたいと考えています。

「数字」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right