アカウンティング入門

原点回帰!価値提供の軌跡

価値と対価の関係は何? ビジネスの基本は、価値を届け対価を得ることにあります。損益計算書は、提供した価値に対して得た売上と、価値を届けるためにかけた費用のバランスを把握するためのツールと言えるでしょう。 赤字の原因は何? もし赤字となる場合は、費用対効果のバランスが崩れていることを示しています。たとえ儲けが大きいことが望ましくても、コアバリューを損なわずに売上と費用のバランスを見直すためには、常に自社が提供したい価値が何であるかを振り返り、その原点に立ち返る必要があります。 提供価値はどう伝わる? 現状の売上の構成や、価値提供のためにかかっている費用を損益計算書をもとに見直すことが求められます。また、コアバリューを顧客体験として届けるためには、単に目標を達成するだけでなく、どのような価値を提供した結果として売上が立ったのか、その達成プロセスそのものが本質であり、事業の成長可能性に大きく影響すると考えます。 価値実現の進捗は? 今期の振り返り面談では、今後やりたい取り組みとしてこの点をお話する予定です。日々の業務では、単にKPIを達成することに注力するのではなく、その達成プロセスを通じて自社のコアバリューが体現されているかどうかに意識を向けます。もし体現が不足している場合は、KPIの設定がビジネスの本質からずれている可能性があるとして、定量目標が達成できなかった背景にある定性的要因をきちんとエスカレーションしなければなりません。 事業発展の鍵は? さらに、決算説明資料をもとに、今後どのように事業を発展させ、スケール化を進めることでコアバリューをより深く広く社会に届けることができるかをイメージし、それを社員登用試験でもお話したいと考えています。

戦略思考入門

集合知で拓く戦略の新視点

議論の偏りは大丈夫? サンライズ社のケースを通して、課題解決に向けた議論が偏った論点だけでは進まないことを学びました。まず、各自の直近の関心事や体験によって視野が狭まる可能性があるため、客観的な課題分析が不可欠であると実感しました。 フレームワークは何故有用? 課題に取り組む上で、PEST、3C分析、SWOT分析、バリューチェーン分析といったフレームワークが非常に役立つことがわかりました。特に人事部に所属する立場として、バリューチェーンの観点から戦略を考えることの重要性を感じました。 経営者視点はどう? 戦略策定においては、経営者の視点を持ち、ジレンマを恐れずに行動すること、また他社の意見を積極的に取り入れることが大切です。バリューチェーン分析により企業の優位性の源泉を探ることで、基本戦略の構築や改善が促進されると考えています。 SWOTをどう活かす? さらに、SWOT分析を通じて現在の業界や自社の状況をより深く理解し、それを自部門の戦略構築に活かしていく姿勢が求められると感じました。具体的な人事施策を企画・実行する際には、各部署のニーズや成果を定量・定性で把握することが重要であり、これが強固なバリューチェーン形成や組織の強化につながると実感しています。 全体影響をどう捉える? 今後は、日々の業務や制度、施策が全体のバリューチェーンにどのような影響を及ぼすかを意識するとともに、その視点をメンバーと共有していきたいと思います。経営者になったつもりで、独自の判断軸と基準を持ち、より良い意思決定を行うためにジレンマに果敢に向き合う姿勢が求められると感じました。また、他社の意見を取り入れ「集合知」を活用することも、今後の課題解決に大いに役立つと考えています。

データ・アナリティクス入門

あとひと手間!四段階で切り拓く解決力

どう問題解決する? 問題解決の基本プロセスとして、「What → Where → Why → How」の4つのSTEPを学びました。プロセスを細かく分解し、複数の選択肢を洗い出し、根拠をもって絞り込むことの重要性を強く感じました。日常の業務において、これらのステップをいくつも行き来しながら問題の原因を探る手法は、非常に実践的だと実感しました。 視点を変える意義は? また、仮説を立てる際には、問題に関わりがありそうな要素だけでなく、それ以外の視点にも目を向ける考え方が有益だと学びました。対概念で物事を考えるアプローチは、固定概念に囚われず幅広い視野で問題解決に取り組む姿勢を養うための大切なポイントです。 ABテストの真意は? さらに、ABテストを活用して施策の効果を比較し、条件を揃えた上でデータを分析するプロセスは、仮説検証の精度を高める上で非常に有効だと感じました。仮説を実践しながら効果を測定し、次のアクションにつなげる一連の流れは、今後の分析業務にも大いに役立つと思います。 離脱理由は何か? 加えて、ファネル分析によってユーザーの利用段階を明確に分解し、どのプロセスで離脱が生じているかを把握する手法も印象的でした。漏斗のように段階ごとに数値を追うことで、課題がどこにあるのかを具体的に把握できる点は、現場での運用改善に直結する大切な視点です。 実践で成長する? 全体として、これらのアプローチを繰り返し実践することで、柔軟かつ論理的な問題解決能力を養えると感じました。定量分析やアンケートを活用し、他者の視点も取り入れた説得力のある提案や、チーム目標の設定など、今後の実務や運用計画にも直結する内容で、非常に有意義な学びとなりました。

データ・アナリティクス入門

ABテストで見える進化の軌跡

どうプロセスを分解する? どこに問題があるかを明確にするため、プロセスを段階ごとに分解することが重要です。まず、問題発生箇所(Where)を複数の切り口で特定し、それぞれに対してABテストを実施することで仮説検証を行います。こうした手法は、効率的なコストパフォーマンスに寄与すると同時に、その後の具体的な取り組み(HOW)を事実に基づいて策定するために欠かせません。 どうデータを把握する? 私は製薬会社でMRを担当しており、担当エリアの製品が伸び悩んでいる状況をデータ分析によって明確に把握しました。売上や市場シェアの推移を詳細に検証することで、次のアクションに向けた具体的な問題点の特定が可能となりました。たとえ、担当者固有の感覚や直感に頼りがちな部分があっても、事実ベースの行動こそが仮説検証を丁寧に進める鍵であると実感しています。 何が効果的なABテスト? 具体的なABテストとしては、Aパターンではメディカル専門部署との同行訪問を実施し、Bパターンでは他施設での成功事例を共有する取り組みを行いました。一定期間のテストを経て、どちらのアプローチがより効果的であったかを定量的に評価し、その結果を基盤に最適な施策をエリア全体に展開する方向性を見出すことができました。 どう成長を促進する? 担当エリアの製品成長を促進するための手順は、まず現状把握として売上や市場シェアを分析し、成長が停滞している顧客層を見定めることから始まります。次に、影響力のあるキーパーソンや波及効果の大きい対象をリストアップした上で、仮説を設定しABテストを実施します。その後、テスト結果を定量的に比較し、最も効果が高い施策をエリア全体に適用し、次のアクションに反映させるという流れで進めています。

データ・アナリティクス入門

データ分析の基礎から見直す重要性

比較対象を誤解することの影響は? 分析の基本は比較にあります。特に、比較する対象が「類似性の高いもの同士(Apple to Apple)」であることを意識する必要があります。これまで自身で行ってきたデータ分析において、その認識が誤っていたと感じました。しばしば「異なるもの同士(Apple to Orange)」を比較しようとしていたことに気づいたのです。 データ作成の目的を明確にするには? また、データ作成の際には、まず「目的」を明確にすることが重要であると学びました。ライブ授業で問題に取り組んだ際、大切なポイントを見落としていたことがありました。今後、データ分析を行う際には、まずその分析の目的を再確認し、その上で分析を進めていきたいと思います。 仮説を線で考えることの重要性 さらに、仮説立てに関しても、全体像を広く理解し、点ではなく線で考えることが重要です。これにより、いくつかの仮説をより具体的に報告できるよう努めたいと思います。特に、SEOに関わる数値分析や会員登録までのユーザー動線の見直しに活用できると感じています。 効果的なデータ分析方法とは? データ分析の目的としては、以下の点に注意したいと考えています。 ・さまざまなタイプのデータの特性と、陥りがちな分析の落とし穴に注意する。 ・定量データを用いた分析の重要性を認識し、その活用を図る。 比較と改善のためのディスカッションの重要性 最近は、コンペティターのメディアとの比較や、ユーザー登録導線の参考メディアやランディングページと自社サービスの比較を十分に行えていませんでした。これを改善するため、チームメンバー全員でグループディスカッションを行い、検証結果を導き出す方法を取りたいと思います。

データ・アナリティクス入門

ナノ単科で見つける解決のヒント

何が問題の始まり? 問題解決には、まず「何が問題か」「どこに問題があるのか」「なぜ問題が生じたのか」「どのように対応するか」というプロセスがあることを学びました。最初に、直面している課題や状況から現状とあるべき姿のギャップを把握し、次に客観的なデータを用いて問題箇所を詳細に特定します。この際、MECEやロジックツリーの手法を用いることで、抜けや重複なく整理することが重要です。さらに、問題の背景にある原因を細かく分解し、真の原因に迫る作業が求められます。最後に、さまざまな案を検討し、現状と理想を照らし合わせながら、適切な対策を導き出していきます。 なぜデータが重複? また、phaseごとに製造原価の算出を実施しており、算出データの取り込みとその活用が行われています。しかし、各phaseで実施している業務自体はほぼ同じ内容でありながら、同一データの取り込みなど、重複して実施している作業が存在しています。理想的には、データベースにphaseごとのデータが一元管理され、必要な時に迅速に利用できる体制が整っているべきです。しかし、現状では必要な時に都度データを作成し、同じ内容を複数回取り込むなど、業務に無駄が生じています。 原因はどう分解? このギャップの原因を明確にするためには、実際の業務フローや工数、業務のインプットとアウトプットの詳細、さらにはシステム上の問題点など、ファクトに基づいた確認が不可欠です。定量的なデータを捉えた上で仮説を立て、MECEやロジックツリーといった手法を活用して問題点を細かく洗い出します。こうした手法により、データの切り口を複数持ち、各要素の影響度を把握してプライオリティを付け、効率的に問題解決へと導くことができます。

データ・アナリティクス入門

悔しさを力に変えた成長の軌跡

社員評価はなぜ低い? 最近、私は経営層に対して、社員の口コミ評価が低いという問題に関する提案を行いました。分析の結果、「社員の相互尊重」、「社員の士気」、「人材成長への長期投資」という3つの項目が他の要素と相関しており、影響度が高いことが明らかになりました。また、これらのスコアは他社と比較しても低い状況です。こうした背景から、組織のソフト面(例えば、コミュニケーションの不足など)が問題の原因ではないかと考えました。 実施後の効果は? 提案内容では、1on1研修の実施や外部の相談窓口、メンター制度の導入などを挙げ、各施策実施後にエンゲージメントサーベイを通じて効果を定量的に検証し、次の対策を検討する流れを示しました。具体的な施策の順序については意見をいただきましたが、前段階の詳細な分析やストーリー構築が好評を得たため、今後の企画に繋げていく意欲が湧いています。 学びはどう生かす? また、今回の学びを振り返る中で、いくつか印象深い点がありました。 ①【悔しさをバネに復習&活用】 最終ライブ授業で理解が追いつかない部分が多く、情けなさと悔しさを感じながらも、その感情を忘れずひとつひとつ丁寧に復習し、実務で活用していく決意を新たにしました。 ②【仲間とのつながりを大切に】 ここで出会った仲間との別れは寂しさを感じさせますが、いつかまたどこかで再会できるよう、日々変わらず努力していきたいと考えています。 ③【学びを伝え、学び続ける】 社内で自主的に学びの普及活動を行う中で、一緒にチャレンジしてくれる仲間が増えていることに喜びを感じています。私自身も、今後さらにクリティカルシンキングの講座を受講し、知識やスキルの向上を目指していく予定です。

アカウンティング入門

学びが切り拓く経営の新境地

営業と会計は繋がるか? これまで、営業と会計はまったく別の分野だと考えていました。しかし、会計が示す事業活動の一部に営業が含まれているという点に気付かされ、両者の連関性について新たな視点を得ました。 数字で見る事業の姿は? また、数字には具体的な定量面を示す性質があり、「財務三票」を通じて事業活動の定量面をより明確に把握できることを学びました。言葉で定性面を表現することに長けているため、これまで無意識にその具体化を追求してきた一方で、定量的情報があれば同じ事象を立体的に理解できると実感しました。 利益の捉え方は? 個人事業主として活動していた当時は、利益を自分への給与と捉えていたために、自身の給与を事業コストに含めず誤った利益の算出をしていたことに気付きました。事業の健全な拡大には、本来の利益から利益剰余金を経て純資産を増加させる仕組みが重要であり、そのプロセスが欠如すると自転車操業に陥るリスクが高まると理解するに至りました。 将来をどう見据える? 今後は、財務三表を事業方針と連動させながら読み解くことで、これまで定性面から直感的に把握していた事業の将来性や見通しを、定量面からも理解できるように努めたいと考えています。その経験を活かし、日々捉えている定性情報が組織全体にどのような結果をもたらすのかを、大きな視点で論じられるようになることを目指します。 決算書の深意は? さらに、自社の決算書を丹念に読み込み、B/S、P/L、C/Fの各項目が具体的に何を示しているのかを明確なイメージとして捉えたいと思います。数字と事業活動を結びつける過程で不足している要素を洗い出し、疑問を持ちながら更なる理解を深める姿勢を養いたいと感じています。

リーダーシップ・キャリアビジョン入門

自分に余裕、対話で花咲く

エンパワメントの真意は? エンパワメントのコツについて学びました。まず、自分自身が余裕を持って取り組むことと、相手をよく理解することが重要であると感じました。ただし、すべての仕事にエンパワメントが通用するわけではなく、手に余る仕事や不確実性が高い業務、そして一度の失敗が許されない仕事には注意が必要です。 目標設定の工夫は? また、目標設定の場面では、相手に自ら考えさせ、その意見を引き出す方法が大切だと学びました。その際、相手が「分からなくて」やる気がないのか、「できなくて」やる気がないのか、あるいは最初から「やりたくない」のかを見極めることがポイントです。もし相手が困惑して「やりたくない」と感じている場合は、やる気が湧くような伝え方を工夫し、意味を分かりやすく伝える必要があります。 余裕の大切さは? 私が一番心に響いたのは、「自分自身に余裕をもって」という考えです。余裕がある状態では、相手の話をゆっくりと聞くことができ、たとえピント外れの回答であっても受け入れて、適切にアドバイスや補正を行えると感じました。一方で、余裕がない場合には感情的になりやすいため、対話に臨む前に自分自身の状態を見極めることが大事だと思いました。 目標と組織はどう連携? 今後、目標設定の際には、相手の話をよりよく聞くように努めます。そして、自分で判断するのではなく、相手に「分からないのか、できないのか、やる気がないのか」を考えさせるように意識します。さらに、相手の目標と組織の目標を結びつけ、広い視野でやる気を促すために、6W1Hを意識した定量化ができる目標設定を行い、フォローアップの頻度も増やしながら、寄り添う姿勢で接していきたいと思います。

データ・アナリティクス入門

データ分析の本質を学ぶ喜び

分析手法とは何か? 分析とは比較を通じて行われ、仮説を立てた後にデータを収集・加工することで得られる気付きが重要なプロセスです。定量分析の視点としては、インパクトの大きさ、ギャップ(差異)、トレンド(変化)やばらつき(分布)、パターン(法則)を考えることが重要です。データの代表値として単純平均、加重平均、幾何平均などを使い、ばらつきを見るためには標準偏差をとらえる方法が有効であることが分かりました。また、データを扱う際には、加工してビジュアル化することで一目で理解できるグラフを作成することも重要なプロセスです。 データの特異点をどう見つける? データ分析ではまず平均値を考えがちですが、データの散らばりから特異点を見つけることも重要だと分かりました。そのため、業務(調査系)で平均値のデータを参照する際は、背景に注意し、表面上の見栄えに騙されないよう気を付けたいと思います。また、実証実験で扱うデータについても、属性ごとのデータを無作為に取って平均値を出すのではなく、何と比較するのかを念頭に置き、そのデータで何を伝えたいのかを考慮してデータ分析の設計を進めたいです。今週のGailで学んだように、グラフには特性があり、自分の伝えたいデータをどのようなグラフを使って表現するかを慎重に検討することが重要です。 幾何平均やグラフをどう活用する? 今回学んだ幾何平均は耳慣れない単語だったので、自分でもう少し調べてみたいと思います。また、エクセルなどでよく使うグラフごとの特性について詳しく調べ、どんな場面でそのグラフを使用すべきかを理解できるようにしたいです。今回の学びを定着させるために、実証実験でデータ取得を検討しているメンバーに共有する予定です。

戦略思考入門

スキルを活かした業務改善の冒険

規模と範囲の違いは? 規模の経済性と範囲の経済性について学びました。規模の経済性は、現在の業務においても馴染み深いものであり、生産を拡大してコストを削減し、生産効率を向上させる手法です。一方で、範囲の経済性は複数の製品やサービスを同時に生産することでコストを低減する方法です。そのコストダウンのアプローチにはデメリットもあるため、目的に応じた選択が重要です。 演習で何を実感? また、最後の演習では、与えられた数値や資料を基に仮説を立て、その仮説の正しさを検証することから始めました。この過程で、粒を出すことまではできても、それを整理するためのフレームワークの活用がまだまだ不十分であると感じたため、分析能力の向上が必要だと痛感しました。 中長期戦略はどう? 今後の中長期的な視点としては、新規事業への挑戦時に学んだ内容を活用します。新たにBPO・BPR事業に参入する際には、3C分析、SWOT分析、PEST分析を活用し、目的に合わせた組織形成や業務設計を提案することを目指します。 課内改革は何から? 短期的には、課内の組織編制の検討に学んだフレームワークを活用します。現在の業務における課題を明確にし、その課題解決のために適切な組織形態を提案できるようにしていきます。 分析の始め方は? 分析においては、定量的なデータが多いほど効果的であるため、定性的なデータも可能な限り定量化していくところから開始します。また、定性的なデータにおいても進捗が確認できる指標を検討し、目的やKPIを設定します。この設定に当たっては、現状把握を正確に行い、そのための課題や解決策を設計するために学んだフレームワークを活用していきます。

データ・アナリティクス入門

学びを深めるためのプロセス活用法

問題解決プロセスの重要性 物事の問題を解決する際には、プロセスに分けて考えることが重要です。問題解決のプロセスとして、「What→Where→Why→How」の順序で考えることで、思考を整理して進めることができます。 ギャップをどう具体化する? まず、Whatについては、あるべき姿と現状とのギャップを具体化し、定量的に明確化することが求められます。次に、Where、Why、Howについては、ロジックツリーを用いて目的に合わせた分析を行います。ここで重要なのは、ロジックツリーがMECE(Mutually Exclusive, Collectively Exhaustive)である必要があるものの、必ずしもMECEでなければならないわけではなく、目的に応じて臨機応変に使うことが求められます。 事業部の課題分析法とは? 事業部の課題については、まず現状を分解し、どこが問題でどこが成功しているのかを見極め、その中で原因を深掘りして検討します。また、プロジェクト(PRJ)の進行においては、ゴールと現実を明確にすることで全体の認識を統一し、進行を円滑にすることが重要です。 進行管理と数値化の意義 進行管理業務では、プロジェクトの目標設定及び現状を改めて数値化し、現在の問題が本当に問題であるかを再認識します。会議の進行においても、相手の目的や論点をロジックツリーを使って分解し、論点に基づいた議論を進めることが求められます。 学びのアウトプットをどう活かす? 最後に、アウトプットとして自分が学んだことを整理し、自分の言葉で言語化することで周りに共有し、「What→Where→Why→How」の思考を習慣化することが大切です。

「定量」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right