データ・アナリティクス入門

歩みと気づきをつづる学びの記録

現状は何を示す? 問題解決のプロセスでは、まず「What:問題の明確化」から始め、現状とあるべき姿のギャップを把握します。現状を定量的な数値で示し、関係者間で共通認識を持つことが重要です。取り組むべき問題は、単なる異常事態の解消だけでなく、目指すべき姿へ到達するためにも活用できます。 どこに問題が潜む? 次に「Where:問題個所の特定」に進みます。ここでは、Whatの段階で整理した構造を基に、具体的な問題箇所を抽出します。たとえば、売上の構造を「客数×客単価」といった形で分解することで、問題所在を明確にすることができます。 なぜ原因を探る? 「Why:原因の分析」では、特定した問題箇所をさらに下位概念に分解し、具体的な原因に迫ります。詳細な原因把握は、問題解決のための重要なステップとなります。 どう取り組む解決策? 最後に「How:解決策の立案」を行い、制約や条件を踏まえた上で効果的な対策を導き出します。各ステップを順に辿ることで、全体像を把握しながら解決策を組み立てることが可能となります。 どうしてツリーを活用? また、クライアントから抽象的な課題が事前に提示されることが多いため、ロジックツリーを作成して情報を整理することが効果的です。全体の流れや解像度を上げることで、関係者間の認識合わせがスムーズになり、感度の良い切り口を見つけやすい環境が整います。案件のキックオフ時には、まず自分なりにロジックツリーを構築し、可視化することでその効果を実感できるでしょう。

戦略思考入門

データが照らす捨てる勇気

なぜ実践が苦手? この講座では「戦略における捨てるを身につける」という内容が特に印象に残りました。以前からその考え方に触れていたものの、講座を通じて実際の場面でこの手法を適用する必要性を改めて実感し、自分自身がその実践を苦手だと感じていた理由にも気づかされました。 批判とデータの意義は? 「捨てる」という行動は周囲からの批判を恐れるケースが多く、自分がこれまで培ってきたものを変えるリスクと捉え、避けたくなる部分があると感じていました。しかし、グループディスカッションでは「捨てる」の代わりに、定量的なデータに基づいて選択するというアプローチが紹介され、トレードオフの視点を取り入れることで、これまでの取り組みを付け加える形で活かす方法もあるのではないかと学ぶことができました。 職場での製品挑戦は? 自身の職場では、従来の製品とは異なる新たな製品開発が求められており、「新しいことを行う=変化する」がしばしば批判の対象となる状況があります。そこで、まずは客観的なデータに基づいた判断が重要だと感じています。今後は、常にデータで分析できる体制を整え、メンバーにその意識を共有して、定量的な視点から取捨選択を行いながら業務を進めていきたいと思います。 連携の必要性は何? 仕事は一人で完結するものではないため、日常的なコミュニケーションの重要性を実感しています。皆さんも、周囲との連携を図るために日頃からどのような工夫をされているのか、ぜひ教えていただきたいです。

戦略思考入門

時間を操り効率を最大化する方法

どこに集中すべき? リソースには限りがあるため、どこに集中し、どこにエネルギーを注ぐのかを選択する必要があります。そのための選択ポイントとして、まずは明確なゴールを設定しましょう。これにより、何を選び、何を捨てるべきかの指針が得られます。次に、数値的根拠を示すことで、判断を主観や経験則に頼らず、客観的に評価することができます。加えて、成果を定量的に測定することで、継続的な取捨選択が可能になります。最後に、ゴールと数値的根拠に基づき優先順位を明確にすることが重要です。この「選択と集中」によって、限られたリソースを最大限に活用できるのです。 自動化はどう進化? 選択の結果が正解かどうかは未来にしか分かりませんが、「自分なりの判断基準を持って選択すること」が大切です。本来、「時間」と「品質」はトレードオフの関係にあると言われますが、バックオフィス業務の自動化はこれを克服する可能性を秘めています。自動化により、業務の効率化による時間短縮、人的エラーの軽減での高品質化、さらには成果物の品質の均一化が可能になります。 業務整理で変化は? 優先順位の高いものにリソースを集中させるためには、まずは現在の業務を圧縮する必要があります。これにより、業務の増加に対応するためにも、業務整理を行い、何を優先すべきかを再確認することが重要です。時間というリソースを有効活用するためにも、生成AIや自動化ツールに関する知識を深め、その活用を通じて、重要な業務に集中できる環境を整えたいと考えています。

データ・アナリティクス入門

ChatGPTで学びの視点を拡張する方法

ロジックツリーとMECEの限界は? ロジックツリーやMECEを使って考えると、一人での作業では思考に癖が出て、洗い出しが不十分だったり、偏った視点になりがちです。しかし、CHATGPTを活用することで、自分とは異なる視点から「漏れなく」洗い出せる可能性が高まることを実感しました。実際、学習の際にCHATGPTを利用した結果、より早く自分なりの答えに近づくことができました。 定量分析の視点の活用法は? 定量分析の5つの視点については、普段何気なく行っていたことが体系化されていることに気づきました。データ分析を行う際には、どの視点が最適か常に立ち止まって考えるようにしたいと思います。 CHATGPTの効率的な利用方法は? また、問題を洗い出す際にCHATGPTを活用することで、様々な視点から効率的に問題点をリストアップできるようになりました。以前はこの作業に多くの時間を費やしていましたが、CHATGPTの登場により時間的コストが大幅に削減されました。学習ではコストと見合った洗い出しが重要だと教えられましたが、短時間で漏れなく洗い出すことを優先すべきだと感じています。 独自プロンプトの効果は? さらに、問題の洗い出しをスムーズに行うために、自分独自のプロンプトを考案しました。問題洗い出しの場面では、そのプロンプトを使って多様な視点から問題をリストアップすることを徹底しています。また、このプロンプトは従業員にも共有し、同じような場面で活用してもらうようにしています。

戦略思考入門

固定費見直しで高まるインパクト

実践演習で発見した課題は? 実践演習を通じて私が学んだのは、例えば規模の経済性の意味を知識として理解しているだけでは、それを実際に活用することは困難だということです。活用するためには、その本質的な意味をしっかり理解し、自社の状況を正確に把握して初めて適用可能になります。また、商品やサービスを理解する際には視野が狭くなりがちなので、定量的な資料などの客観的な情報を集めることが重要です。 コスト削減と提案の実行計画は? 「わかったつもり」で物事を進めたり結論を出してしまう危険性は常に存在するため、本質的な意味を確認する必要性を強く感じました。また、現状の部門では固定費の削減が可能と考えています。具体的には、不要な固定費の見直しを行い、インパクトのある提案をしたいと思います。さらに、範囲の経済性を高めるためにも、例えば評価制度の見直しや顧客接点を全社で共有できる仕組みの導入も考慮したいと思います。 マクロの動向をどう捉えるべきか? 個人としては、政治・経済・社会・技術革新といったマクロの動向が、自社業界や自社にどう影響を与えるかを常に意識しておくことが重要だと感じました。現在、社内インフラの一部である電話やFAXの運用変更を進めることで固定費削減のインパクトを高めたいと考えています。また、顧客接点管理として、名刺管理サービスのオプション機能の検討も行いたいです。さらに、学んだことを活かして複数の業界研究を行い、高い視座を持ち続けるよう積極的に取り組んでいます。

クリティカルシンキング入門

見える化で共感を得るデータ活用法

クリティカルな思考を鍛えるには? クリティカルな思考の出発点は「問い~issue~」です。頭の使い方を鍛えるためには、考えやすいことや考えたいことに偏らず、自己満足で終わらないようにすることが重要です。そのためには、考えが主観的か客観的かを見分ける余裕を持つことが大切です。 データ解析で変化を起こすには? 考えていることを周囲に「見える化」するためには、定量データを精選し適切に分解して解像度を上げることが求められます。グラフの作成においては、種類、着色、表示方法に工夫を凝らし、手間を惜しまないことが必要です。これにより、周囲の共感やポジティブな変化が期待できます。 営業ライン業務での挑戦は? 長年勤めた教材制作・講師を中心とした業務から、2か月前に地域を管轄する営業ライン業務に異動しました。定性面に加えて定量面でもしっかり語れる力を鍛えたいと思っています。1on1や毎月・毎週の定例ミーティングから次年度計画策定に至るまで、数的状況を分解し、それを根拠に共感度の高いコミュニケーションを実現したいと考えています。 データで訴求力を高める方法は? 根拠や主張を明確に伝えるためのデータの見せ方を、経験と研鑽を重ねながら精度を上げていくことを目指しています。その際には、堅苦しい主観的な記載ではなく、見てわかりやすい客観的な記載を心掛けてプレゼンテーション資料を作成します。これにより、自身の訴求力を高め、周囲の同意を得られるよう努めていきたいと思っています。

戦略思考入門

捨てる勇気で未来を変える

決断に必要な覚悟は? 今週の学習では、職位に伴い「捨てる=決める」覚悟が求められることを再認識しました。決断の難しさは、実行によって得られるお客さまの満足度や、金銭的コスト、運営効率といった具体的な要因に加え、現状の人間関係にも左右されるため、一層厄介に感じます。本来、仕事の目的はお客さまのためであることを再確認し、その視点を失わないよう、勇気を持って決断していきたいと考えています。 なぜ変化が難しい? また、GAILにおける業務や対応について、なんとなく慣習的に行われている点が存在することも痛感しました。変化を起こすにはエネルギーが必要で、現状維持が一番楽に見えるため、思考停止に陥ってしまうケースがあると感じます。短期的には問題がなくとも、長期的には現状維持が続くことで衰退につながる可能性もあるため、PDCAサイクルを積極的に回し、業務の背景や考え方を継承することが重要だと思いました。また、定期的な担当者(またはマネージャー)の入れ替えにより、「なぜこうする必要があるのか」という疑問を持ち続ける環境を整えることも大切です。 なぜ優先順位付けが必要? さらに、整備士向けのスキルコンテストの事務局業務では、毎年恒例の行事ということもあり、過去の方法にただ従っているタスクがいくつか存在するのが現実です。限られた時間の中で、これまで何となく実施してきたタスクに優先順位をつけ、定量的な判断に基づいて、継続するか見直すかの決断を下す必要があると感じました。

データ・アナリティクス入門

比較が拓く新たな自己発見

比較ってどう進める? データ分析の根本は比較にあります。分析を行う際には、目的に応じた条件を揃えた比較対象を設定することが大切です。目的が明確であれば、適切な比較対象の選定が可能となり、分析の精度も向上します。 直感の表現は? また、直感的な感覚を自分の言葉で言語化することも重要です。「なんとなく」という漠然とした感覚を具体的に説明できるようにすることで、分析結果に説得力が生まれます。 定性定量はどう? 定量・定性の両面のデータを活用し、定量データの尺度の違いや特徴を把握することも必要です。さらに、分析の目的に合わせた可視化―例えばパーセンテージ表示やグラフ化―を行うことで、結果をより理解しやすく提示することが可能となります。 分析手順は何? データの加工や分析のプロセスでは、まず目的の確認と仮説の立案を行い、その後に結論へと導く一連の手順が求められます。この流れをしっかりと実行することで、効果的な分析と説得力のある結論が導かれます。 活用場面で何をすべき? 具体的な活用場面としては、営業やチームから依頼された市場データの提供、他社への施策提案、自社商品の価格検討などが挙げられます。これらの場面では、まず目的や期日などのゴールを明確に確認し、必要な条件を的確にヒアリングすることから始め、比較対象の設定、データの収集・加工・分析を実施します。最後に、分析の目的に沿った可視化手法を用いて、結論を提供することが求められます。

戦略思考入門

戦略的課題解決: 効果的な一歩を踏み出す方法

戦略はどう学んだの? 講座を通じて、戦略とは目的に向かって効果的かつ効率的に進むための手段であることを学びました。目的が設定され、共通認識を持つことが前提となる中で特に重要だと感じたのは、以下の三つです。 課題をどう見抜くの? まず、課題が発生している部分を明確にすることです。次に、課題解決に向けて適切なフレームワークを段階的に使用すること。そして、優先順位を決めることが重要です。 目的は何を意識? 私自身が常に心掛けたいのは、目的に立ち返ることです。なぜ今この課題解決に取り組んでいるのか、なぜ強みや弱みに対する強化や対策を行っているのかを忘れず、判断するときにはその目的を意識し続けることを目標としています。 活用法はどう検討? 具体的な活用法としては、まず組織編制の際に定量的情報を多く取り入れることにより、効果的かつ効率的な編制を提案していきたいと思います。また、業務設計においては、既存業務で発生するエラーを減らすためにバリューチェーンを活用し、課題の多い部分を特定し、改善を実施することを目指します。 どうやって行動する? これらを実現するために、まずは文字に書き起こし、個人ワークで仮説を立て、その後に正確な情報を周囲から集めて検証していきます。このように行動することで、目的が共通認識され、その達成に貢献できる提案が可能となる環境を整えていきます。したがって、第一ステップとして、文字に書き起こすところから始めます。

データ・アナリティクス入門

データに基づく未来予測の極意

データとは何か? データとは一般的に定量データを意味し、分析とは具体的に要素を分けて整理し、各要素の特性や構造を明確にすることを指します。分析を進める際には、比較対象や基準を設け、それらと比較することが重要です。 データ加工はどう行う? これから学ぶデータも同様に、定量データに焦点を当てます。このデータに応じて、適切な加工法やグラフの見せ方を考える必要があります。たとえば、傾向や頻度を比較する際には縦のグラフが有効で、量の大小を比較する際には横のグラフが効果的です。 分析の目的をどう設定? データ分析を始める前には、【目的】すなわち何のためにデータを分析するのかを明確にし、【仮説】としてどのような項目をどう分析するかをあらかじめ考えておく必要があります。 どんな分析を実施する? 例えば、以下のような内容についてデータ分析を行っていきたいと考えています。 - 優良顧客のデータ分析 - メンテナンス業を伴う機械の交換パーツ分析 - メールマガジン配信後の開封率、クリック測定 - 精度の高い売上予測 - リピート商品の仕組み化に向けた分析 これらの分析によって、例えば上半期の売り上げの高い上位20%の顧客データを抽出し、カテゴリー化することができます。それにより、特定の商品が売れている理由を仮説として考え、その仮説に基づいてキャンペーンメールを配信することで、受注の拡大や新たな分野への展開を図ることが可能になります。

クリティカルシンキング入門

実践で磨く分解の極意

全体像はどう把握? 本講座では、全体をしっかり定義した上で作業を進める重要性を実感しました。まず全体像を捉えることで、分解の作業がスムーズになり、全体に漏れがなく整然とした分析が可能だと感じました。 MECEは何を意味? また、分け方においてはMECE(抜けや重複がない)を常に意識することが大切だと学びました。例えば、単に「若者」や「リピーター」といった大雑把なカテゴリーで分類してしまうと、定義が曖昧になり、漏れやダブりが発生する可能性があるため、年齢や来店頻度など定量的な指標を用いることが有効です。 複数切り口は有効? さらに、仮説を持ちながら複数の切り口でデータを分類する手法には大きな意義を感じました。年代を10代ごとに分ける方法や、学歴など別の視点で区切る方法など、異なるアプローチを試すことで、より実態に即した傾向を掴むことができると感じました。 視覚チェックで見える? 加えて、図を描くなど視覚的な手段を用いてチェックすることで、直感だけでは気付けなかった課題を明確にできる点にも非常に参考になりました。最終的には、分けた後に「本当にそうか?」と問い直すプロセスが、より深い理解と洗練された分析に結びつくと実感しています。 実践から何を得る? 最後に、考える前にまず実際に分けてみることの大切さを学びました。実践を通じて自分自身の仮説を検証し、新たな視点を得るプロセスは、今後の分析活動に大いに役立つと感じています。

データ・アナリティクス入門

問題解決の鍵:ギャップを見極めるポイント

問題解決の基本ステップをどう活用する? 問題解決について、「What・Where・Why・How」の段階があることを学びました。これらの段階は場合によっては行き来しながら課題の特定を進めるために用いられます。 定量的なギャップ分析を習慣化すべき? 問題解決において、定量的なギャップを要素分解し、影響度の高い変数を特定する手法は、どのような案件にも通じるため、ぜひ習慣化していきたいと感じました。また、MECE(Mutually Exclusive, Collectively Exhaustive)に分解するためのフレームワークについても、既存のものを学ぶ必要があると考えています。 部門間の合意形成はどう進める? 様々な部門の相談案件に対応する際には、まずどこにギャップがあるのかを明確にし、相手の合意を得たうえで進めることが重要です。そして、目の前の依頼内容の解決にとどまらず、その依頼が本質的な事業課題を要素分解した際にどれほどの影響度を持つのかを冷静に判断し、本当に解くべき課題の探索にも応用することが必要です。 「What」から考え始める理由とは? 現状対応中の案件や新規案件に取り組む際には、「How」から入らず、まず立ち止まって「What」からステップを踏んで考えることが求められます。また、あるべき姿と現状とのギャップについては、依頼元としっかりとすり合わせ、共通認識のもとで仕事を進めることが大切だと感じました。

「定量」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right