データ・アナリティクス入門

問いから始まるデータ探求

仮説はどう作成? データ分析において、まず仮説(問い)をどのように作成するかが重要であると再認識しました。解説で提示された「地元のネットワークを構築できなかったから」という視点は、私にとって新たな発見でした。また、仮説自体の数が少なかったことから、問いを思いつくためのトレーニングが必要だと感じました。 中央値の適用は? 代表値、特に中央値の用い方についても多くを学びました。アンケート分析などにおいて、平均値が低いという理由だけで意図的に中央値を用いるのは適切ではないという指摘は、慎重な判断が求められると実感させられました。 平均値は信用できる? 報道などで目にする数字の平均値だけに頼るのではなく、しっかりと問いを立て、調査することの大切さを改めて考えさせられました。 最適なグラフは? また、伝えたい内容や主張に合わせて最適なグラフを選定する方法を検討し、Excelなどで実際に作成してみることが有効だと感じました。問いを立て、その根拠となるデータを調べ考察する訓練の重要性も実感しました。

マーケティング入門

顧客を引き寄せる!魅力的な商品戦略

自社商品の魅力をどう伝える? 自社商品の魅力を顧客に効果的に伝えること、そして顧客が商品に魅力を感じるサイクルが重要だということを学びました。売れている商品についてディスカッションしていると、日常的に「繰り返し触れる」商品が存在感を示すことに気づきました。例えば、著名な人物に関するニュースは多く、知らず知らずのうちに印象に残っています。 事業開発における継続的なアプローチとは? 私の仕事である事業開発においても、単に「顧客の声を基にプロダクトを開発しリリースする」だけでは不十分です。顧客に対して、訴求や価値を体験する機会を継続的に提供することが必要です。もちろん、その過程で出た改善要望には運用や次の開発で応じていくことになります。 認知度向上の新たな戦略は? 収支計画を立てる際には、収入目標に対する提案数はKPIとして設定していましたが、認知度の向上や繰り返しの訴求に関してはカバーできていませんでした。この点については、デジタルマーケティングチームの助言を得て新たに対応していく予定です。

データ・アナリティクス入門

ロジックツリーで問題解決の新視点を発見

ロジックツリーはなぜ必要? ロジックツリーの作り方について、層別分解と変数分解の二つの手法があることを学びました。それぞれの方法は、分析したいデータに応じて使い分けることが重要だと考えます。一般的には、MECEの概念に基づいて、漏れなく重複なくと考えがちですが、実際には問題特定や新たな発見を目的として、意味のある分類ができるように、様々な視点を持つことが重要だと感じました。 層別分解の効果は? あるプロジェクトでは、問題を特定する必要があるため、ロジックツリーを用いた層別分解によって、MECEを念頭に置きながら、どのような層別にするかを考え、問題特定や意味ある分類を目指したいと思います。 ギャップ埋めはどうする? まず、理想的な状態と現状の間にあるギャップを洗い出し、ロジックツリーの層別分解に当てはめることで、多角的な視点から分析を行いたいと考えています。そして、さまざまな層別で詳細に分解し、問題箇所を特定し、そのギャップをどのように埋めていくかについての提案を資料としてまとめたいと思います。

データ・アナリティクス入門

問題解決のアプローチで明確なビジョンを構築

問題解決のアプローチを学ぶ 問題解決には、「現状→あるべき姿」と「現状→ありたい姿」の二つのアプローチがあることを学びました。自分の業務に照らし合わせると、現状では大学の退学率が○○%であるのに対し、ありたい姿は退学率を0%にすることです。現状とありたい姿を明確に認識することで、分析時のブレを防ぐことができると思います。 イベントでロジックツリーをどう使う? 大学でイベントを行う機会が多くありますが、その際にロジックツリーを使用し、来場者プレゼントやイベント内容を決定するのに活用できそうです。また、このプロセスをチーム内で共有することで、決定の場面で話がスムーズに進むと感じました。 分析の透明性をどう確保する? 誰かに説明する際には、分析のフレームワークを共有し、「こういった分析を行い、こう決定した」という考えの過程を透明にすることが重要です。さらに、何か分析を行う際には、闇雲に考えずに、まず分析のフレームワーク(ロジックツリーやMECE)が活用できないかを検討することを心がけたいと思います。

マーケティング入門

忙しいあなたでも学べるビジネス実務の秘密

なぜ実務に有効なのか? このコースは、特に実務に直結する知識が多く、即戦力として役立つ内容が非常に充実していました。授業内の事例を通じて、リアルなビジネスシーンでの具体的な対応方法を学ぶことができたのは大変有意義でした。 忙しい中でも学習が可能? また、オンラインでの受講ということもあり、自分のペースで学習を進められることが助かりました。隙間時間を活用して学ぶことができ、仕事との両立がしやすかったです。これにより、忙しい業務の合間でも効率的に学びを深めることができました。 質問対応で得た納得感とは? 講師も非常に知識が豊富であり、質問にも丁寧に対応してくださったため、疑問点をそのままにせず解決することができました。おかげで、納得感を持って進めることができました。 他の単科コースもおすすめ? このように、ナノ単科は学びやすさと実務への活用度という点で非常に優れたコースでした。今後も他の単科コースを受講し、さらなる自己研鑽に努めていきたいと思います。

戦略思考入門

フレームワークで磨く戦略思考

戦略学習はどう感じる? 戦略的思考を養うために、さまざまなビジネスフレームワークを学び、それらの活用方法を理解できたことが大きな収穫です。普段の業務において、意識的にフレームワークを取り入れ、着実にスキルとして身に着けることが重要だと考えています。 戦略実践で何を実感した? 勤務先で長期のビジネス戦略を立案する際、学んだフレームワークを手元に置きながら、使えるものを積極的に適用しています。その過程で、不足している情報や欠けている視点を明らかにし、それを補うことで、より高い価値の創出を目指しています。また、人事戦略の立案においても、これらのフレームワークを活用するよう努めています。 次の一手は何にする? 具体的な取り組みとして、以下の3点を実施する予定です。1.今年の人事戦略立案にフレームワークを活用する。2.会社のビジネス戦略のディスカッションの際、フレームワークを適用して重要な視点を見出し、それをインプットする。3.自身が学んだ内容をチームメンバーや友人知人に説明し、理解を深め定着させる。

データ・アナリティクス入門

目的を見据える分析の一歩

どんな学び方がある? 今週は、正直何をすればよいのか、どう学び、どのようにグループワークを進めればよいのかが分からず、新しいインプットがほとんど得られなかったため、少し物足りなさを感じました。もっと手を動かして分析に挑戦してみたかったという思いがあります。 目的を見いだすコツは? 目的を明確にして分析を始めることが大切です。一つのデータや事象に固執せず、視点を変えて全体を俯瞰しながら取り組む姿勢が求められます。常に目的を意識し、仮説検証が難しいときは生成AIの力も上手に活用していくことが重要だと感じました。 目的をどう守る? また、仮説思考でクリティカルに考える習慣を身につけるため、業務に取り組む際には常に目的を意識する必要があります。部下が目的を見失わないよう、状況確認を行うことも意識して取り組んでいかなければなりません。 広報の立ち位置は? 現在の広報業務においては、この仕事がマーケティングファネルのどの位置にあたるかを常に考えながら進めていくことが求められると強く感じています。

データ・アナリティクス入門

数字に秘めた学びのヒント

数字選びはどうすべき? 代表値やばらつきを考慮し、適切な数字を選ぶ重要性について学びました。データには多様な側面があり、集計して表にまとめる際には、その背景となる意味を正しく理解する必要があります。 データの組み合わせは? また、他者のデータを確認する際も、各数字がどのような要素で構成されているかを意識することが大切だと感じました。たとえば、会議室の使用率や社員の出社率といった具体的な数値をデータベースでチェックし、分布図を用いて関連性を見出そうと試みた経験があります。こうすることで、新たな視点から情報を捉えることができました。 情報整理のコツは? さらに、過去の購買履歴をグラフ化するなど、複数のアプローチでデータに向き合うことで、細かい点まで確認し、本当に必要な情報を抽出するプロセスが重要だと再認識しました。まずは細かいデータを収集し、グラフ化やピボットテーブルを活用して全体像を把握し、さらにまとめられるデータは一つの図に統合することで、情報を整理しやすくすることが効果的だと感じています。

クリティカルシンキング入門

数字の秘密を読み解く冒険

数字の変化はなぜ? 数字の変化の理解には、その構成要素をどのように分解するかによって、要因が見える場合と見えない場合があることを学びました。MECE(Mutually Exclusive, Collectively Exhaustive)を常に意識しつつ、事実に基づいた正確な分析を心がけ、訓練を進めたいと思います。 保留事項はどう考える? 特定の層に対する保留の度合いを、新たな区分や詳細な粒度で分析し、要因や傾向を明確にすることを目指しています。これにより、内容によっては保留率を下げたり、不要な確認を省略でき、業務の効率化が図れると考えています。 データ分析はどう進める? 具体的には、過去5年のデータを集計し、保留理由や契約者の年齢、営業担当者の経験やエリアなどによってグループ分けを行います。さらに、各層の傾向を棒グラフで示し、変化の推移を折れ線で追い、散布図を用いて他の傾向も探っていきます。発見した傾向については、さらに要素を分けたり、分析の範囲を絞るなどの詳細な分析を行う予定です。

戦略思考入門

顧客視点で差別化!戦略的アプローチ

なぜ顧客目線が大事? 差別化を考える際には、まず顧客の視点が重要であることを学びました。簡単な施策では競合他社も同様のことを実行している可能性があるため、競合の動向をリサーチすることも必要です。差別化を実現するために、3C分析やVRIO分析などのフレームワークを活用し、実現可能かつ持続可能な方策を考えていきたいと思います。 ターゲットは誰? まず、ターゲットを明確にすることが重要です。施策の対象となる顧客が誰なのかをはっきりとさせます。そして、競合他社のリサーチを行い、彼らの特色や優位性を理解することが必要です。 報告はどうまとめる? これらの情報を基に、フレームワークを用いて実現可能な施策を考えていきたいと思います。まずは業界全体の特色を整理し、その中で自社の特色や優位性を理解し、まとめていきます。広い視野で業界を先読みし、市場分析を行うことで他社との差別化を図り、経営会議で報告できるようにしたいです。報告資料には十分なエビデンスを含め、経営層が納得できる内容にしたいと考えています。

データ・アナリティクス入門

実務に直結するナノ単科の魅力

実践的な学びで得たことは? ナノ単科を受講して、非常に有意義な学びを得ました。特に魅力的だったのは、理論だけでなく実践的な視点から学べる点です。ケーススタディを通じて具体的な事例を検討できるため、知識が実務に直結する感覚が得られました。 ディスカッションで視野を広げる 講師の解説も非常にわかりやすく、難解な理論も分かりやすく説明してくれます。さらに、他の受講生とのディスカッションは視野を広げる機会となり、多角的な視点で物事を考える力が養われました。 柔軟な学習スタイルの魅力 コースの進行もスムーズで、自分のペースで学習を進められる点は非常に助かりました。仕事との両立が難しい方でも、この柔軟な学習スタイルは非常に適しています。一方で、締め切りが適度に設定されているため、学習が滞ることなく進められる点も評価が高いです。 継続学習でスキルアップ 総じて、大変満足のいく学びの場を提供してくれていると感じます。これからも自分のスキルや知識を高めるために、引き続きナノ単科を活用したいと思います。

クリティカルシンキング入門

視点を広げる3つの視を学び業務改善へ

視野を広げるためにできること ディスカッションを通じて、自分の視野や思考の狭さを改めて実感しました。特に心に残ったのは、「3つの視」視点・視座・視野という考え方です。この考え方を基に、制約や偏りを避けるための頭の使い方を学ぶ必要があると強く感じました。 問題解決の新しいアプローチとは? 業務において問題や課題が掲示された際には、まず頭の使い方や切り口を意識して考えるようにします。同僚や他部署の人と話す際には、根拠をもって話すことで互いに納得感を持って新たな業務に取り組めるように心がけます。また、プレゼン資料を作成する際には、深く考えて上司が納得できる資料を作り、自分の言葉で伝えられるように努めます。 日々のアウトプットをどう続ける? さらに、頭の使い方を知り、直ぐに答えを出さずに深く考えることを習慣化することが重要です。無意識のうちに考えを制約してしまっていることを念頭に置きながら、答えを導き出します。これらの考え方を無意識に行えるようになるため、日々のアウトプットも欠かさず行っていきます。

「学び」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right