クリティカルシンキング入門

学びのカギは「問い」から始めよう

今週の学び「問いの立て方」とは? 今週は「問いの立て方」について学びました。その内容としては、以下の3点が重要です。 1. **問いから始める事**:最初に問いを意識すること。 2. **問いを残す事**:問いを意識し続けること。 3. **問いを共有する事**:組織全体で方向性を共有すること。 解決策とは何を指すのか? 「問いから始めること」について特に考えさせられました。総合演習の設問で解決策と課題のまとめを行う中で、「そもそも何を解決したかったのか」が不明確なことに気が付き、自分自身で今ここで答えを出すべき問い(イシュー)を意識して取り組む必要があると改めて感じました。 業務への応用を考えてみる ここから得た気づきを基に、社内外の業務にどのように応用できるかを考えてみました。 **製品仕様、要求仕様の検討**: 製品の細かい仕様やユーザーからの要求仕様を製品仕様に落とし込む際、「何のために必要な機能か」「本当に必要な機能は何か」を最初に考え、イシューを設定してから仕様の検討に着手することが重要です。 **社内の打合せ**: 社内外の打合せでは、目的をイシューとして設定し、会議の時間内に何を決めるべきかを明確にすることで、会議の時間を効率的に使えるようにする必要があります。 以上のように、問いを意識することが、業務の効率化や質の向上に寄与すると感じています。

データ・アナリティクス入門

多角的仮説で拓く学びの未来

どんな仮説を試す? 仮説を考える際には、複数の視点から取り組むことが重要です。まず、複数の仮説を立てることで決め打ちを避け、幅広い可能性を探る姿勢が求められます。また、異なる切り口―例えばヒト・モノ・カネのどの要素に課題があるのか、あるいは商品販売プロセスのどこに問題が潜んでいるのか―を網羅的に検討することで、より具体的な仮説を構築できます。 タイプで違いは? 仮説には大きく分けて2種類あります。一つは、ある論点に対する仮の答えを示し、議論の幅を広げる結論の仮説です。もう一つは、具体的な問題解決を推進するための仮説で、WHAT、WHERE、WHY、HOWのどの要素に問題があるのかを明確にして解決策を導く問題解決の仮説です。 検証で何が変わる? さらに、仮説を考えることには大きな意義があります。検証マインドや説得力が向上するだけでなく、問題意識を高める効果もあります。その結果、行動のスピードと精度が向上し、より効果的な対策へとつながります。 AIとどう連携する? 現代では、AIを活用して仮説の壁打ちが可能となり、自分の頭だけでなくAIの知見も借りながら思考を深めることができます。しかし、最終的な判断と実行は現場の状況を熟知している人間が行う必要があります。今後は、AIとの協働を自身なりに取り入れ、生産性をさらに高めていくことが求められると感じています。

データ・アナリティクス入門

平均値だけじゃない!全体を読む力

全体像はどう理解? データ分析において、従来は個々の指標の数値に注目していましたが、全体像を俯瞰する視点の重要性に気付かされました。ミクロな比較だけでなく、マクロな観点からデータ全体の分布に目を向けることで、より精度の高い理解が得られると感じています。 分布の意義はどう? 単に平均値だけに頼るのではなく、各指標のばらつきや分布の状況を把握することが、好調な要因や低調な要因を見極める上で大いに役立ちます。利用者の属性ごとにどのような傾向があるのかを明確に掴むためには、データ全体を広い視野で捉える必要があると実感しました。 層ごとの違いは何? たとえば、ある教育機関の利用者分析では、一部の層でばらつきが大きく見られる一方、他の層では比較的安定した数値が示されていました。こうした違いは、全体のデータを俯瞰することで初めて正しく理解できると考えます。 ツール選びはどうする? 私自身は、常に分布と俯瞰的な視点を忘れないよう、日々の学習の中で意識しています。平均値だけでなく、各種指標の分布を把握するためのツール構築にも取り組み、より具体的かつ実践的な分析に努めています。 仲間とどう共有する? また、周囲の仲間にも、平均値一辺倒にならず、データ全体の傾向を把握する大切さを伝えるよう心がけています。この学びを通じ、より深い洞察と分析力の向上を目指していきたいと考えています。

戦略思考入門

捨てる勇気が変える働き方

優先順位はどう考える? 軸を持って優先順位を決めているつもりではありましたが、実際には投資時間の効率性への意識が不足していると感じています。日常的に優先順位は決めているものの、必要のないものを「捨てる」選択が十分にできていないと痛感しました。無駄な業務に惰性や自己満足が紛れていないか、常に意識しなければならないと考えさせられました。 業務選びは正しい? また、業務の選択においては、トレードオフになってしまうとき、どちらかに偏れず中途半端な結果に陥ってしまうことも多いと感じています。一方で、必要なものを削ぎ落とすことが、結果として顧客の利便性向上につながるという点は非常に印象的でした。 部署の役割は明確? その学びを活かし、現在進めている自部署の業務範囲・役割の明確化プロセスに取り組みたいと思います。業務範囲が曖昧になりがちな部門であるため、まずはありたい姿や部署の役割を部内で議論し、それを基に部署の目標を再設定し、判断基準の軸を定めることが重要です。 業務の仕分けは正確? 具体的には、まず現在の業務を棚卸しし、判断基準に合致するものとしないものに仕分けます。合わない業務については、完全に実施を中止するのか、または外部委託など別の方法を検討する必要があります。一方、基準に合致する業務については、それぞれに対して適切な予算や人員の配分を再検討していきたいと考えています。

データ・アナリティクス入門

A/Bテストで見えた学びのヒント

目的と仮説は合っていますか? A/Bテストを実施する際は、まず目的や仮説を明確にし、検証項目をしっかりと設定することが重要です。仮説検証を繰り返すことで、どの施策が効果的かを見極めやすくなります。また、テストは1要素ずつに絞り、同一の期間で実施することで、結果の比較が正確に行えます。 セグメント選定の視点は? さらに、対象とするセグメントの軸や狙うべきターゲットは、単に機械的な判断で決めるものではありません。多様な視点を取り入れてバランスよく検討することが求められます。 事例の適用方法は正しい? 具体的な事例として、来週から展示会に向けた来場促進やセミナー申込促進のメール配信を予定している場合、各配信ごとにA/Bテストを行い、前年までの配信データを整理した上で効果を比較する方法が考えられます。また、現在実施している販促キャンペーンのメルマガにおいてもA/Bテストを導入することで、最適な配信内容を模索することができます。 テスト結果の比較はどう考える? たとえば、優良顧客を対象にグループ分けをしてテストを行い、結果が良かった方の内容を全体に活用して前回の配信内容との差を確認する方法があります。一方で、以前「今だけ送料無料」をアピールした際に期待した効果が得られなかった場合は、内容を再精査し、異なるパターンでA/Bテストを実施して比較することも有効です。

デザイン思考入門

共感なくして論文は成らず!挑戦の学び

論文準備は順調? 現在、学会発表用の論文を準備しています。自社の事例に基づき、他社ではどのような状況か、またユーザーがどのように感じているかを知るため、インタビューを実施する予定です。 不満の理由は? 論文のテーマは実務に直結しており、「教科書通りの開発手法を実施したにもかかわらず、なぜユーザーから不満が出るのか」という問いから始まります。書き上げた部分には共感が不足している点も見受けられるため、インタビューの際にはその点を重点的に理解してもらえるようにしたいと考えています。 実践はどう進む? 実践段階はこれからですが、ちょうど良い機会であると捉えています。論文が煮詰まっている状態も、今後の改善に向けた良いタイミングだと前向きに受け止めています。インタビュー後に「やはりあれも聞いておけばよかった」という状況が起こる可能性は十分にあるため、慎重に準備しつつ、再度インタビューが必要になることもあらかじめ想定しておくのが良いと感じました。 共感は伝わる? また、「共感」はデザイン思考の中で最も重要な要素の一つだと認識しています。実際、プライベートで少年サッカーのサポートをしている際、ゲームに参加して選手と一緒にプレイすることで、選手の現在の能力や、練習の成果がどの程度反映されているかを実際に感じ取ることができています。これも「共感」を得るための一つの方法だと考えています。

リーダーシップ・キャリアビジョン入門

多様な視点でリーダー像を再考する旅

新たな学びは感じる? 社内では得られない新しい学びを実感しました。特に日々の業務に関連する目標設定などに加え、普段は考える機会が少ないキャリアアンカーやキャリアサバイバルについても取り組めたことが大きな価値でした。また、多様な方と意見を交わしながら考えるグループワークは、大変刺激的であり、学ぶモチベーションを高めるのにも役立ちました。 対話で信頼築ける? 今後も変化していきそうな理想のリーダー像ですが、対話を通じて信頼を築き、エンパワーメントを促進するという基本的な部分は変わらないでしょう。リーダーとしての明確な役職がなくても、人々との対話を積極的に行いたいです。メンバーはもちろん、業務上関わる部署内の方々とも、自社や顧客の方々と広くコミュニケーションを図るつもりです。この際には、一方的に伝えるのではなく、相手自身に語らせる手法を採り、相手を理解しようとする姿勢を持って信頼関係を築いていきたいです。 改善のヒントは? できなかったことや不安、課題といったマイナス面に注意が向きがちですが、できたことやさらに改善できること、良かったことに意識を向けていきたいと思います。自分の話をする際も、不安や課題が話題に出がちですが、そこに共感を示すことが大事だと感じています。また、期待と現実のギャップを定期的に確認し、一緒に改善策を考え、本人からの意見を引き出すことを意識したいと思います。

アカウンティング入門

数字で読み解く企業の個性

企業の利益は何が違う? 企業には様々な利益が存在し、それぞれの性質を理解することで、企業活動の本質に迫ることができると感じました。同じ業種内でも、どこに価値を見出し、どの部分に独自性を表現するかで、示される数字や財務状況が大きく異なることに気づきました。特定の同業他社の財務情報を参考にするのも有益ですが、自社ならではの価値の源泉を明確にすることが、企業としての個性を引き出すのだと思います。 利益率はどう意識すべき? また、起業後は各利益率を正確に把握し、それが目標値に近いかを意識して経営に取り組むことが大切だと感じました。特にスタートアップ企業は、すぐに売り上げが上がらない場合や、補助金などで一時的な運転資金を得ることも多く、利益率をすぐに重視する経営は難しい面があることを実感しています。今後は、財務情報が得られる企業との比較も行い、事業内容だけでなく数値面からも学びを深めていきたいと思います。 財務の本質は何が分かる? さらに、これまで勤務していた複数の企業の財務諸表を見比べる中で、業種や規模の違いにより共通点が見いだせない部分がある点に、非常に興味をそそられました。たとえば、売り上げがない研究機関や複雑な連結決算を行っている企業など、それぞれの事情が浮き彫りになっています。一方で、スタートアップはお金の流れがシンプルで、初めて見る者にとっても理解しやすいと感じました。

アカウンティング入門

数字とコンセプトで未来を創る

なぜ損益計算書を学ぶ? 損益計算書の構造を学び、売上総利益、営業利益、経常利益、税前当期純利益、そして当期純利益という5種類の利益が整理された形で理解できるようになりました。今まであいまいだった部分が明確になり、全体像が把握しやすくなったと感じています。 事業コンセプトは信頼? また、事業コンセプトをしっかりと据える考え方に深く共感しています。個人の「思い」を実現するために具体的な方法を一緒に考えるアプローチは、これからの経営において非常に有用だと実感しています。経営相談では妥協点を探ることも多い中、明確なコンセプトに基づいて「どうするか」を決める方針は、自分にとても合っていると感じました。 どんな印象的な提案? 具体的には、以下の点が印象的でした。 ① 既存のお客様にさらに価値を提供できる対応が考えられること。 ② しっかりとした事業コンセプトをもとに、実現方法を議論できる点。 ③ 自分のお客様に対して、具体的に「できること」を提案する重要性。 理解を深める方法は? 公開されている損益計算書を実際に読み合わせることで、理解をより深め、一層の成長につながると期待しています。また、カフェの創業時に直面する開店資金の調達など、さまざまな困難については、実際に経験された方の話を伺い、実現可能性をディスカッションする機会があればと考えています。

データ・アナリティクス入門

データが映す学びの真実

比較検証で何が分かる? データ分析の魅力は、データを漏れなく比較することで仮説を立て、現状を正確に把握できる点にあります。理想の状態が明確になると、実行可能な改善策が見えてくるため、比較検証はとても有効です。また、ヒストグラムや散布図を用いることで、データのばらつきを視覚的に把握でき、適切な分解や分類により分析の精度が向上します。これにより、異なる視点から問題点や改善案を検討できる点が非常に魅力的だと感じました。 実務でどう活かす? 学んだフレームワークを実務で活用するため、過去のデータ分析を再実施し、問題点と改善策を明確にすることを試みました。現状把握には5W1Hを用いた定量的な分析を行い、現場でのヒアリングと合わせることで、実際のデータとのズレを確認しながら解決策を検討しています。これまでグラフを活用してきましたが、ヒストグラムや散布図の導入は初めての試みで、今後さらに活用していきたいと考えています。 効果的な選定法は? 効果的なデータ分析には、収集時に重要な項目を明確にし、適切なデータを選定することが欠かせません。定期的な可視化によりデータの傾向を把握し、その結果を共有することで継続的な改善が図れます。また、What、Where、Why、Howといったステップを守ることで、思考の幅が広がり、仮説とデータに基づく検証を通してより実践的な分析が可能になると実感しました。

データ・アナリティクス入門

ギャップに挑む学びの一歩

問題の本質をどう捉える? 問題解決プロセスについて学んだ内容は、まず「ありたい姿」と現状を比較し、そこに存在するギャップに着目する点から始まります。その上で、問題を構成する要素に分解し、ロジックツリーを用いながら要素間の関係を整理していく方法を学びました。ここでは、MECEの原則を意識しながら、WHAT、WHERE、WHY、HOWといった各視点で問題を詳細に捉えていくプロセスが重要です。特に、どこに問題が潜んでいるか(WHERE)の特定が解決への大きな手がかりとなります。 広告関連の要因は? たとえば、広告効果を測るデータで前回のCPと比較し、数値に大きな乖離が見られる場合、このプロセスは有効に働きます。その際には、広告以外の宣伝活動があったか、テレビで取り上げられたか、他社が類似のCMを始めたか、または在庫の問題がなかったかなど、さまざまな要因を洗い出して、どうすれば問題が解決できるかを検討することが求められます。 部門へ依頼する理由は? 現状では、業務スコープの中でデータが正しく取り込まれ、出力される段階で分析が終了してしまっていることが多く、結果としてその分析作業は別の部門に依頼しているケースが見受けられます。今後は、アナリストとしての視点を強化し、データを直接営業チームに提供できるよう、問題解決プロセス全体に対する理解と取り組みをさらに深めていきたいと感じました。

データ・アナリティクス入門

データ分析の本質を再発見!

分析と整理の違いは何か? 「分析」、「収集」、「整理」はそれぞれ異なる作業です。データ整理で分析が終わることもしばしばあり、比較対象があいまいになることもあります。また、見せ方に時間をかけすぎると、「相手に伝えたい」という本来の目的が不明瞭になることが多々あります。これは、「分析とは比較である」ことや「目的に立ち返ること」がしばしば抜け落ちがちだからではないでしょうか。楽な方に流れる思考や、目に見える分かりやすいものに飛びつきやすいバイアスに引っ張られる癖があります。自分の特徴を含めてこれらをしっかり俯瞰して整理しておかないと、学びの方向性やその捉え方がずれてしまう可能性もあると感じました。 常に数値を更新する重要性 販売状況や市況状況、社内状況の分析を進める中で、過去の基準や初期値がたびたび変更されてきました。分析が比較である以上、常に更新された数値のみが注目されることが多いです。このような状況では正確な分析ができず、意思決定に繋がらないと感じています。これはとても危険なことかもしれません。 データ整理はなぜ重要か? 様々な分野で目的とされることを視野に入れ、使用されるデータの洗い出しを行います。比較するためにも整理が必要ですので、いつでもデータを抽出できるよう、整理を行うことが重要です。整理された状態から、それぞれの目的に合わせた比較基準を設計することが求められます。
AIコーチング導線バナー

「学び」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right