クリティカルシンキング入門

思考の癖を越えて新たな視点へ

思考癖はどう考える? 自身に思考の癖があることを改めて受け入れ、それを知りたいと思いました。判断を行う際には、大小問わず一度同僚や部下に相談し、どのように判断すべきかを問うつもりです。これは、自分の思考の癖を理解することと、相手の意見を受け入れることの両方が目的です。知識や経験から素早く判断する癖もあるため、その点も注意が必要です。 会議で何確認する? デザインやクリエイティブの会議、状況報告、指示の受け渡しの際には、目的を明確にしておくことが大切です。一度出た課題や結論に対しても、自分自身や周囲に対し異なる視点や考えがないかを問いかけることを意識します。癖があることを前提に、それを受け入れ、目的と照らし合わせた判断を行うように心がけます。 結論の真意は? 自分や相手の判断の癖を改めて言語化し、通常の流れに一石を投じるつもりです。異なる視点で見たときに結論や方法に違いがないか、指示されたりする内容の本意がどこにあるかを考えます。それは一見手間がかかりスピードが落ちそうに感じることもありますが、逆に最短で目指す場所に辿り着ける可能性があるかもしれないという期待を持ちながら進めていきたいと思います。

クリティカルシンキング入門

自分変革のヒントがここに

なぜアウトプットが大切? クリティカルシンキング講座を通じて、学んだ知識や将来のありたい姿について整理する機会を得ました。その結果、自分に不足している点や今後習得すべきスキルについて明確な指針が見えてきました。また、インプットだけの知識よりも、アウトプットを意識した知識の方がはるかに習熟度が高いことを、この六週間で実感しました。 変化の波にどう乗る? 私の業務はソフトウェア開発であり、変化の激しい現代において特にその業界は急速に変わっています。生成AIの登場に伴い、ソフトウェアエンジニアの働き方も大きく変化している現状にあって、常に消費者のニーズを満たす製品を生み出すためには、クリティカルシンキングが大きな基盤となると感じています。 意見はどう伝える? また、MTGでのディスカッションでは、認識のずれや歪みが生じうることを意識し、経験豊富な上司やメンバーの意見をただ受け入れるのではなく、自分の意見も積極的に伝えることを心がけています。さらに、ソフトウェアの機能開発においては、ユーザーが本当に求めているものは何かを常に考えながら、ユーザーの期待に応える製品作りに取り組んでいます。

クリティカルシンキング入門

切り口と仮説で視野を広げるデータ分析学び

数値分析の固定概念を超えて 分析とは、数値を分けて検証することと認識していました。固定概念があり、年齢層は10代ごとなど決まったフレームで対応する傾向がありましたが、データによって柔軟に対応すべきと感じました。今後は、様々な切り口で分析を行うことを決めました。ただし、行う量が多すぎると時間ばかり浪費するので、仮説と検証を繰り返し、仮説力を高めるように努めます。 どのように視野を広げる? 数値検証は、どの分野でも必要です。自社においても多くのデータがあるため、切り口と仮説を意識して活用していきます。数値を扱う部署にいたため、頭が固くなっていると感じていましたが、検証を通じて視野を広げようと思います。会社の中でも分析に期待されている声があるので、この研修を活かせればと考えています。 新規業務にどう備える? 部署が変わってから数値検証やグラフ作成の機会が減少していますが、この研修を受けて学び直し、今後の新規業務に備えたいと思います。ミーシーについては知識としては理解していると感じても、実際に行うと漏れやダブりが発生しがちですので、今後は自分の手法が本当に正しいか常に意識して進めたいと思います。

戦略思考入門

多様な視点を武器に!意見を活かす力

多角的視点で何を捉える? 本質を見失わず、多角的な視点で広い視野から分析することの重要性を実感しています。フレームワークのような戦術は、知識として知っただけで満足せず、実際に活用して初めて効果的な武器になると考えています。また、自分の意見に固執するのではなく、多くの人の意見を取り入れることを意識したいと思います。 悩みはどう生じる? 働く中で、自分一人で悩みがちで、他者が理解してくれないと感じることがあります。これにより、悩みを抱え込み、人に打ち明けずフィードバックを受け入れられないという悪循環に陥っていました。しかし、学習を通じてフィードバックを得ないことが最も危険であると実感しました。納得できない意見に直面したとしても、他の人の意見を聞くことをあきらめないで、多様な視点を得るようにしたいです。 意見共有はどう進む? 企画や戦略を立てる際には、自分だけで完璧を目指すのではなく、早い段階でチームメンバーから意見をもらうことを心がけます。そして、その意見をもとに内容をさらに高めていき、上司の意見を取り入れる過程を習慣化したいです。このようにして、より良い成果を生み出すことを目指します。

データ・アナリティクス入門

議論と実践で広がる学びの輪

学びはどう活かす? ライブ授業では、講座の振り返りを行い、学んだ知識を実際の分析に生かす取り組みをしました。これにより、受講前と比べて明確に得たものがあると実感しました。 意見交換はどう効く? グループワークを通じては、自分の意見の推敲や新たな視点の獲得に大変役立ったと感じています。各人の考えを共有する中で、議論が深まり、より効率的に分析に取り組む方法についても考える機会となりました。 実践で何が見える? 実践演習では、講座の振り返りに十分な時間をかけることで、手を動かして考えることの重要性とともに、手を動かさずに思考することの大切さにも気づくことができました。フレームワークを活用しながら、分析のバランスや順序を意識して取り組む姿勢が印象に残っています。 目的と仮説の行方? また、目的の明確化や仮説設定の重要性を再認識しました。何を伝えたいのか、どのような問題を解決したいのかを最初にしっかりと考えることで、効率的な分析が可能になると感じました。ただし、仮説設定の段階でも実際に手を動かして考えたほうが良い面もあるため、両方のアプローチを意識することが大切だと思いました。

リーダーシップ・キャリアビジョン入門

押し付けない対話で成長実感

プロジェクトでの挑戦は? これから複数のプロジェクトを立ち上げる中で、エンパワメントの考え方を実践してみたいと考えています。動画で学んできた知識に加え、今回のAI演習を通じて、自分自身の不足点がより明確になりました。 押し付けに気づいた? 演習はパソコンでの作業という特性上、普段の会話以上に意識を向けましたが、それでもなお、会話が押し付けがましくなってしまい、相手の不安をうまく汲み取れなかったという結果になりました。この経験から、普段のやり取りでもつい自分の意見を強く押し付けてしまっているのだと実感しました。 成長機会はどうなる? その結果、メンバーが自ら成長する機会を失い、マネージャー自身も時間に追われる状況が生まれてしまう恐れがあります。そこで、まずは今回学んだことをプロジェクトに反映させ、実践していくことに挑戦したいと思います。 会話のバランスはどう? また、押し付けずに問いかけ中心の会話を試みると、逆に話がだらだらと続いて終着が見えなくなるという課題も浮き彫りになりました。今後はその適切なバランスを見いだせるよう、日々の業務で試行錯誤を続けていく所存です。

データ・アナリティクス入門

出会いが拓く気づきの瞬間

どうして意識が低いの? アメリカにおける反ユダヤ主義事件への立ち上がり意識は、近年低下傾向にあります。最新の調査では、2025年には事件に立ち向かう意識を持つ人が15%にとどまり、2023年の20%と比較して5ポイントの減少が見られます。また、約29%の回答者はその件について聞いたことがあると答えた一方、実際に行動に移す人の割合は非常に少ない状況です。さらに、45%のアメリカ人は個人的な接触がなく、ユダヤ人を直接知る機会がないため、反ユダヤ主義に対する具体的な行動が起こりにくいと考えられます。 背景に何があるの? この現状を、問題解決プロセスが示すwhat(現状と計画または希望とのギャップ)という視点で捉えると、個人間の接触不足が、意識の低下に大きく影響していることが浮かび上がります。where, why, howの各要素については、論理的に整理し、背景や理由、具体的な改善策を明確にすることが求められます。 また、グループレッスンの場では、これまで学んできた内容について異なる視点から再度理解を深める機会を設けることで、さらなる知識の定着と応用が図られることが期待されます。

データ・アナリティクス入門

SNS分析で得た新たな学びとテクニック

代表値の使い分けは必要? 代表値と散らばりの両方を意識する必要があることを学びました。代表値には単純平均、加重平均、幾何平均、中央値があり、特に平均値に3つの種類があるため、使い分けが重要です。 ビジュアル化の選び方は? また、ビジュアル化の重要性についても考えさせられました。どのようなグラフを使うかは分析したい内容に依存し、この点は経験から学んだつもりでしたが、実際には正確な知識が不足していたことを改めて認識しました。 各種データの分析に標準偏差を使おう これまでは単純平均しか算出したことがなかったため、今後は必要に応じて3種類の平均値を意識して使い分けるようにします。SNS投稿の反応を分析する際もばらつきを考慮せず、平均値だけで傾向を把握していましたが、標準偏差も用いることでより正確な把握・報告ができそうです。 例えば、SNS投稿に関する実績報告時には、エンゲージメント率などを平均だけでなく標準偏差も使用して分析しようと思います。投稿の種類や内容のカテゴリーによって差があるのかどうかも検討しつつ、ビジュアル化する際は適したグラフを選ぶことも重要だと考えます。

戦略思考入門

迷い捨て、戦略で未来創る

戦略ツールはどう活かす? 今週の振り返りを通じて、戦略的思考を支える具体的なツールとして、フレームワークやメカニズムの存在を再認識しました。単に知識として習得するだけでなく、どのシーンで活用できるかを判断する経験とトレーニングが必要であると実感しています。今後は、各テーマに取り組む際に、どのフレームワークやメカニズムが適用できるかを意識的に考える習慣を身につけたいと考えています。 捨てる勇気は持てる? また、「捨てる決断」が自分にまだ十分できていないことに気づけたのは大きな学びでした。重要性を理解していても実際の行動に移せていない自分に向き合うきっかけとなりました。これからは、仕事やプライベートにおいても、優先順位を明確にした上で「捨てる」決断を実践することを意識していきたいと思います。 専門性はどう磨く? さらに、専門性の向上を今後の取り組みの柱にしようと決意しました。戦略的な考えをフレームワークに基づいて展開するだけではなく、その実現可能性に対する自信を持つことが実際の行動に結びつくと感じています。自分の場合、その自信は専門知識やスキルの向上にあると実感しています。

クリティカルシンキング入門

全体把握で広がる発見の世界

MECEはなぜ有効なの? 「分かる」とは、単に知識として理解するだけでなく、物事を適切に分けて考えることに他なりません。まず、全体を定義し、その上でMECE(Mutually Exclusive, Collectively Exhaustive)の視点を取り入れて各要素を分解することが大切だと感じました。このプロセスを繰り返すことで、従来の通例にとらわれず、別の角度からの新たな発見も期待できます。 市場はどう捉える? また、市場調査やマーケティングにおいても、MECEの考え方は非常に重要です。ついつい感情や先入観から一部の要素だけを重視してしまいがちですが、全体像を正確に把握し、それぞれの要素が適切に分析されているか、見落としがないかどうかを常に意識する必要があります。 意見の裏には何が? さらに、他者からの提案を受け入れる際にも、全体を俯瞰して本質がどこにあるかを探り、本質をとらえるための切り口が適切かどうかを検証することが重要です。この際、その分け方が唯一の正解であるのか、または別の視点から新たな発見が得られる可能性がないかを慎重に考えることが求められます。

アカウンティング入門

数字を紡ぐ、事業の新たな物語

P/L全体の位置づけは? 今週はP/L全体の概要について学びました。これまで自分の業務では売上総利益や営業利益まで意識していたものの、経常利益、税前当期純利益、当期純利益といった項目に触れる機会がなかったため、今回の学びでそれぞれがどのような位置づけであるかを理解できました。 事業価値の違いは? また、同じ業態の事業であっても、自社が提供する価値の違いにより、費用のかけ方や利益の生み出し方が変わってくることを再認識しました。そのため、P/Lの数字を単なる数値として捉えるのではなく、自社のビジネスモデルというストーリーを描きながら読み解くことが重要であると感じました。 今後の活かし方は? 具体的には、次の点が今後の業務に生かせると考えます。まず、来期の事業計画策定の際に、今回の知識が大いに役立つでしょう。次に、売上原価の内訳や利益構成比を詳細に確認することで、自社の利益構造や提供価値を改めて認識し、改善点が見つかるかもしれません。さらに、同業他社とのP/L比較を通じて、それぞれの企業がどのようなストーリーを持って事業を行っているのかを考える機会にもなると考えています。

データ・アナリティクス入門

挑戦で切り拓く統計の世界

平均値の使い方は? 普段は代表値や単純平均を活用して概ねの状況把握に努めています。加重平均や中央値も業務の中で用いられている印象ですが、幾何平均や標準偏差に関しては、知識としてはあるものの実践する場面が少なく、具体的な事例を通じて使いこなす機会が今後の課題だと感じています。 ばらつきの見える化は? 特にばらつきに関しては、標準偏差の数値だけでは理解しにくいため、ビジュアル化して整理することが重要だと思います。ビジュアルで示すことで、各切り口からトレンドを読み取りやすくなり、自身だけでなく他者にも理解してもらいやすくなると感じます。 幾何平均はどう活かす? また、幾何平均については、実践での理解を深める努力が必要だと感じます。理解が進めば、標準偏差と組み合わせて顧客分析などの業務において有効な手段になると考えています。 分析に挑戦するには? まずは、苦手意識のある分析手法や未経験の手法に挑戦し、自分自身で試してみることが理解への早道だと思います。職業柄、大規模なデータに触れることもあるため、今回学んだ知識を実務にうまく活かしていきたいと考えています。
AIコーチング導線バナー

「意識 × 知識」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right