リーダーシップ・キャリアビジョン入門

リーダーシップの新たな視点を探る旅

リーダーシップの行動に何が求められる? リーダーシップには、行動、能力、意識が重要です。これらのうち、他者から直接見えるのは行動であるため、リーダーシップでは行動に特に重点が置かれます。しかし、行動は「能力×意識」によって成り立っているため、能力の向上と意識の醸成を踏まえた行動が求められると感じました。 リーダーシップとマネジメントの違いは? リーダーシップとマネジメントの役割を明確にすることも重要です。リーダーシップは、変革の推進を主な任務とし、そこでは0から1を生み出すような新しい旗を掲げます。これに対し、マネジメントは、掲げた旗のもとで効率的な運営を担当します。リーダーあるいはマネージャーとして、どちらの役割が求められているかをきちんと把握することが大切です。 新たな施策導入のポイントは? 過去に自分が経験した仕事の中で、成功した変革に関わる行動やその背景にあった意識を振り返り、言語化することが求められます。10月は下半期の始まりで、上半期の成果を踏まえて新たな施策を導入する時期です。この月を通じて新しいアイデアを部門で発表し、意識も含めた行動計画を示してメンバーを巻き込む努力を心がけます。 実践におけるコミュニケーションの重要性 リーダーシップとマネジメントの実践においては、メンバーとの会話をしっかり行い、その習熟度や意気込みを確認することも重要です。過去の事例を参考にしつつ、実際の場面で効果的にリーダーシップを発揮するよう努めるつもりです。

クリティカルシンキング入門

「データ分析の真髄を学ぶ:見逃さないコツ」

グラフを使う重要性とは? 数字データを扱う際には、以下の点に着目すべきと感じました。 まず最初に、グラフを使う選択肢を常に考えることが重要です。さらに、見えている数字だけで判断してはならないという点も大切です。また、一般的なデータの切り方が必ずしも正しいとは限らないことにも注意が必要です。 データ分解で深掘りする方法 データの分解では、当初出た傾向とは異なる結果が見える場合があるので、さらに深く分解することが求められます。その際、MECEを意識し、特にモレがないようにすることが重要だと思います。また、層別、変数、プロセスを使い分けることも必要です。 運用設計で注意すべき点 運用設計を行う際には、利害関係者がMECEでモレがないかを確認することが必要です。新規事業のフロー構築において、全体をプロセスで分解し、必要なツールを作成していますが、再度プロセスを確認し、より正確なものに仕上げていくことも大事です。 サマリーデータはどう見せる? クライアント提出用のサマリーデータに関しては、見せ方を工夫し、ニーズに応えた数字を提出することが求められます。そして、時間的なロスが生まれるかもしれませんが、一度作成したものを一日寝かせてから再度検証することを意図的に実施するべきです。 急ぎの案件での分析 急ぎの案件では、得たい数字が出た時点で分析を完結してしまうケースがあるため、これ以上分解できないかにこだわって現状把握を進めることが重要だと考えます。

クリティカルシンキング入門

議論が脱線しないための会議術の極意

イシューを明確にするには? イシューを把握し、貫くことの重要性に気付かされました。自分が思っていた以上に、議論が脱線し、本来の目的とは異なる方向でリソースを費やしていたことに気付いたのです。 その防止策として、以下の点が挙げられます: 1. **本当の問いを明示すること**。 2. **その問いに対して的確に問うているか確認すること**。 3. **チームの場合、相手の問いが本当の問いかどうか見極めること**。 どのように会議を改善する? これらを実践することで、案内文章、企画提案書、共有資料、会議など多くの場面で効果を発揮します。特に会議では、議論の中で「何を言っているのだろう?」と思うことが多く、チーム内でイシューが共有されていないことが原因だと感じました。裏を返せば、イシューを明確にセットしてから会議に入ることで、これを防止できると考えています。 今後、現状把握と問題発見、課題設定の機会が増える中で、脱線せずに何を問われているのか、何を問うているのかを意識していきます。次回からは、この会議の目的やイシューを提示してから参加・実施し、その変化を確認してみる予定です。さらに、思索メモのトップに目的やイシューを記載することも心掛けます。 どんなフレームを構築すべき? また、今期から上司のスタイルを模倣して整理していますが、もう少し成長の実感が欲しいところです。イシューに立ち返るフレームを構築し、課題の真因発見に繋げていきたいと考えています。

リーダーシップ・キャリアビジョン入門

信頼で繋ぐ挑戦と成長の軌跡

リーダーシップとは何? リーダーシップは、状況に応じて適切に発揮すべきだと考えています。そのためには、まず高い能力と意識が求められ、両者を融合させることで、行動につながります。また、自身を律する(自分化)とともに、経験から学び教訓に変える(教訓化)、そしてその過程を具体的に言語化することも重要です。始めにゴールのイメージをしっかり持ち、報告・連絡・相談を徹底することで、メンバー一人ひとりの理解度を把握し、背景や意図、目的を明確に伝える必要があります。何より、信頼がなければリーダーシップを発揮することはできず、それがなければどんな取り組みも実を結ばないでしょう。 プロジェクトはどう進む? プロジェクトにおいては、いくつかのタスクをメンバーに任せていますが、進め方にスピードや深みが感じられない場合には、背景や目的を再度説明し、全体のゴールイメージを共有しています。さらに、状況確認が必要な部下にはこまめに声をかけ、実態をしっかり把握する努力を重ねています。 部下への寄り添いは? 直近では、「どうプロジェクトを進めれば良いのか分からないけれど、聞きに行けずに涙してしまう」という部下の声を受け、上記の方法を徹底することにしました。彼女の悩みを理解するために、何がどこで分からなくなったのか都度確認しながら、寄り添う姿勢を持ち続けます。自分自身がまだ若く感じる部分もありますが、チームのアウトプットの最大化を最優先に考え、部下と真摯に向き合っていく所存です。

リーダーシップ・キャリアビジョン入門

キャリアを見つめる新しい視点

キャリアの軸は何? キャリアを考える上で重要な概念として、「キャリア・アンカー」と「キャリアサバイバル」があります。この二つは、個人の判断基準やモチベーション、キャリア構築に深く影響を与えるため、キャリア形成の手法であると同時に、メンバー育成においても重要な認識です。ただし、「キャリア・アンカー」と職業を直接結び付けることは避けるべきです。 戦略はどう描く? 「キャリアサバイバル」は、職務と役割の戦略的なプランニングです。目指すキャリアと組織が求める役割を理解し、試行錯誤しながら、自らが進めたいキャリアと組織から求められるアウトプットを両立させることが求められます。 価値観はどう確認? 新しい仕事やプロジェクトを始める際、初めて接するメンバーと仕事をする場合には、各メンバーが持つ判断基準や価値観を認識することが重要です。これによって、目標設定やタスクの割り振りが適切になり、メンバーが仕事の意味や意義に共感しやすくなることで、モチベーションの向上につながります。 成果と成長は? これまで一緒に仕事をしたことがないメンバーと協働する際には、その人の能力やスキルを確認するだけでなく、どのような判断基準や価値観を持っているかを把握するよう努めましょう。また、仕事を割り振る際には、その仕事が求めている成果やアウトプットを共有するとともに、その仕事が各メンバーのキャリアにどのように影響を与えるかや、どのように貢献できるかを伝えることが重要です。

データ・アナリティクス入門

数字が紡ぐリアル戦略ストーリー

数字の意味は何だろう? 分析のアプローチについては、ただ単に分析を進めるのではなく、数字に基づくストーリーを意識することの重要性を実感しました。統計データを見る際にも、平均値だけでなくばらつきを把握することで、より正確な判断ができると感じています。データ全体の傾向を理解した上で、平均、中央値、最頻値といった代表値から最も適切なものを選ぶことが大切です。 課題解決の鍵は? また、顧客の課題に対して解決策を提案する場合、やみくもな分析ではなく、具体的な数字に裏打ちされたストーリーによって、提案の確度を高め、顧客の納得感につなげることが求められると考えています。顧客自身が「これなら解決できる」と信じ、実行に移していただくためには、具体的で説得力のある根拠が不可欠です。 戦略の軸は何か? さらに、これからある不動産ブランドの戦略を分析する際には、まず「何を知りたいのか」という問題意識をはっきりさせ、最終的にどのような結論に導きたいのかを明確にすることから始めます。その上で、価格帯やエリア、スペックなど細かい情報に分解し、必要なデータが取得可能かどうか確認することが大切です。 仮説はどう練られる? 次に、取得したデータをもとに、なぜその戦略が採用されているのかという仮説を立て、検証の優先順位をつけながら実態を深く理解していく流れが有効だと感じました。こうした手法を通して、現実に即した分析が行え、説得力のある結論に結びつくと確信しています。

データ・アナリティクス入門

比較が拓く新たな自己発見

比較ってどう進める? データ分析の根本は比較にあります。分析を行う際には、目的に応じた条件を揃えた比較対象を設定することが大切です。目的が明確であれば、適切な比較対象の選定が可能となり、分析の精度も向上します。 直感の表現は? また、直感的な感覚を自分の言葉で言語化することも重要です。「なんとなく」という漠然とした感覚を具体的に説明できるようにすることで、分析結果に説得力が生まれます。 定性定量はどう? 定量・定性の両面のデータを活用し、定量データの尺度の違いや特徴を把握することも必要です。さらに、分析の目的に合わせた可視化―例えばパーセンテージ表示やグラフ化―を行うことで、結果をより理解しやすく提示することが可能となります。 分析手順は何? データの加工や分析のプロセスでは、まず目的の確認と仮説の立案を行い、その後に結論へと導く一連の手順が求められます。この流れをしっかりと実行することで、効果的な分析と説得力のある結論が導かれます。 活用場面で何をすべき? 具体的な活用場面としては、営業やチームから依頼された市場データの提供、他社への施策提案、自社商品の価格検討などが挙げられます。これらの場面では、まず目的や期日などのゴールを明確に確認し、必要な条件を的確にヒアリングすることから始め、比較対象の設定、データの収集・加工・分析を実施します。最後に、分析の目的に沿った可視化手法を用いて、結論を提供することが求められます。

データ・アナリティクス入門

データ可視化で見えてくる新たな発見

分析の視点を再確認する方法とは? 前回の学びから、分析における視点として5つの要素、すなわち「インパクト」、「ギャップ」、「トレンド」、「ばらつき」、「パターン」に分けて考えることが有用であると再確認しました。数字をただ眺めるだけでは気づきが得にくい場合でも、目的に応じた適切な可視化を行うことで数字の意味を見出すことが容易になります。特に、可視化は自分の理解を深めるだけでなく、説明相手の理解や認識の統一にも役立つと感じました。 平均の取り方をどう活用する? 普段の仕事でもデータを扱っており、どのような代表値を用いてその数字の塊を特徴づけて解釈するかを意識していましたが、この学びを通じてさらに細かな平均の取り方を再認識しました。特に幾何平均の活用については、施策立案や来期戦略、予算作成の際に大いに役立ちそうです。例えば、年間の応募推移を過去5年間にわたって見たときに、どのようにトレンドの推移を適切に抽出するかなどを具体的に考えることができました。 日々のKPI管理で使える可視化手法は? また、日々のKPI管理についても適切な可視化が求められます。現在は折れ線グラフで推移を見ていますが、前年比や積み上げグラフなども必要かもしれません。ユーザーの行動を分析する際には、ヒストグラムを活用して傾向を掴むことも考えています。具体的には、インストールからコンバージョンまでの期間別ユーザー数を把握することで、より詳細な分析が可能になると考えています。

データ・アナリティクス入門

未来の問題解決力を養うナノ単科の魅力

問題解決の4ステップとは? 問題解決の4ステップについて確認しました。これらのステップは、問題の明確化、問題箇所の特定、原因の分析、そして解決策の立案です。問題が発生した際には、このフレームワークに従って課題の本質と原因を十分に把握し、それを踏まえた解決策を検討することが重要です。ビジネスではスピード感が求められることが多いですが、原因分析を急いでしまうと誤った解決策に至る可能性があるため、注意が必要です。 仮説設定のポイントは? また、仮説を考える際のポイントには、複数の仮説を立てることや、仮説同士の網羅性を持たせることがあります。決めうちせずに、異なる切り口で仮説を立てることが大切です。仮説は他の可能性を排除した先にあるため、データによる裏付けも重要です。特に社会課題を扱う際には、原因の仮説が「分かりやすい」ものに走りがちですが、常に複数の可能性を視野に入れてデータを検討することが必要です。 フレームワークをどう活用するか? 提案やブレストの際には、今回のフレームワークを取り入れたいと考えています。また、チーム内で問題解決の4ステップを共有し、データの取得方法を数字だけでなく、アンケートや口頭での情報収集など選択肢を広げて検討することも重要です。 仮説設定が重要な理由は? 特にデータ分析では「仮説設定」が最も重要であり、クリエイティブが求められる分野だと感じています。今後、この点を重点的に取り組みたいと思います。

データ・アナリティクス入門

平均だけじゃ見えないデータ

平均値だけで大丈夫? 今週の学習を通して、データを扱う際に平均値だけを確認するのは不十分であると改めて実感しました。平均値はデータの中心傾向を示すものの、ばらつき(分散や標準偏差)を反映していないため、データの特性を正しく理解するには中央値や最頻値など他の代表値も併せて確認する必要があると感じました。 グラフの選び方は? また、データを直感的に把握するためには、単なる数値の羅列ではなく可視化が重要です。グラフの種類を適切に選ぶことで、データの傾向やパターンがより分かりやすくなります。時系列データには折れ線グラフ、カテゴリごとの比較には棒グラフ、割合を示す場合には円グラフなど、目的に応じた使い分けが求められると再認識しました。 代表値はどう使う? 普段、さまざまな部署とデータ分析を行っている中で、平均値だけではなく他の代表値を用いることや、適切なグラフを選択することが業務に直結する重要な要素となっています。これまで平均値のみで示していたデータに対して、中央値や最頻値を加えることで、より正確な解釈につながると感じています。 今後どう進める? 今後は、データを扱う際に平均値に偏らず、中央値や最頻値、分散などの情報も徹底的に確認します。また、他者が作成したデータや可視化についても、目的に適しているかどうかをチェックし、必要であれば適切な改善点を提案することで、誤った解釈を未然に防ぎ、正確な意思決定につなげていきたいと考えています。

デザイン思考入門

共感で磨く顧客ヒアリング術

顧客課題整理は? 「顧客課題仮説」では、ユーザー、状況、課題、ソリューションをそれぞれ具体的に整理することで、単なるぼんやりした仮定ではなく、明確な言葉に落とし込むことができました。この手法により、経営者や従業員、支援者が共通のイメージを持ちやすくなったと感じます。 ヒアリングの進み具合は? 実際に経営者を対象に実践した際、項目ごとに整理されていることで、ヒアリングがスムーズに進み、受け入れやすい結果となりました。一方、ある飲食店の場合は、オーナーだけでなく、実情を把握している店長やホール担当へのヒアリングを次回実施することとなりました。もし項目化がなされていなかったなら、経営者の感覚だけでヒアリングが終わっていた可能性があります。 ユーザー深堀りは本当か? また、別の企業では、対象ユーザーが十分に深堀りされず、ニーズが曖昧な状況でしたが、今回の見直しを通じて、改めてユーザーの気持ちや共感を確認する機会となりました。順序は多少前後したものの、最終的にはユーザーの感情を基に課題を再検討することにしました。 共感が導く検討プロセスは? このプロセスでは、共感を出発点として課題を定義することが重視されました。基本的には決められた順序で進むのが望ましいものの、行きつ戻りつの中で課題を固めることも重要であり、仮に具体的なアクションに移していたとしても、ユーザーの共感が揺らいでいる場合は、再度立ち返って検討する必要があると感じました。

データ・アナリティクス入門

実務に直結!データ活用の学び

実務講義はどう感じる? 今週までの講義やグループワークを終え、本格的なデータ加工、代表値とビジュアル化、データ傾向の把握といった実務に直結する講義が始まりました。私自身、エクセルの基本理解が十分でなかったため、代表値や散らばりを用いてデータ傾向を確認する方法や、グループワークで触れたピボットテーブルやクエリを活用した作業効率化に関する気づきは、今後につながる貴重な学びとなりました。これまでの業務の進め方を見直す上でも、大変有意義な受講でした。 業務効率向上の秘訣は? 所属企業ではグループ店舗のデータ集計・分析や戦略提案を担当していますが、基本知識の不足から作業効率が悪く、長時間を要することが多く苦労していました。しかし、今回の学びを通じて、データの意味を正しくとらえる方法や、効率的な集計作業の進め方が理解できたため、すぐに実務に活かしながら、少しずつスキルを向上させていこうと考えています。 基本技術はどう磨く? さらに、グループワークを経て代表値や散らばりの重要性に加え、エクセルのピボットテーブル操作など、データ集計の基本技術の習得が急務であると実感しました。そのため、早速オンライン動画でエクセル操作(ピボットテーブル活用)のレクチャーを受け、本日以降はこれまで触れていなかった基本知識をさらに深めるとともに、データの傾向把握のために代表値や散らばりに注目した確認を行い、誤ったデータ解釈につながらないよう注意していこうと思います。

「確認 × 把握」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right