マーケティング入門

マーケティング思考で業務を進化させよう

学びはどこから? 業務への学びの落とし込みについて、私はライブ授業でのグループワークを通じて、学んだことが行動や思考に十分に反映されていないことを感じました。特に、最近のプロダクトに関する案件で、メインコピーを考える際にポジショニングの観点を意識できていませんでした。ライブ授業で学んだ方法を活用して競合分析を行い、顧客ニーズを満たすための明確なポジショニング軸をチームと共に検討し、根拠を持って取り組んでいきたいと考えています。 生活で気づくヒントは? 日常生活でもマーケティング思考を磨けることを学びました。ヒット商品や失敗した商品の要因を考察し、ターゲットを分析することで、業務だけでは補えない経験を得たいと思っています。 ターゲティングは何から? ターゲティングの明確化に関しては、現在「経理部」をターゲットとしているものの、より具体的なセグメントへの分解ができていません。受注傾向を深掘りし、ターゲティングを明確に再設定し、社内の共通言語として共有したいと考えています。また、お客様の声を聞く場面が多くあることで、顧客ニーズを捉えていると誤解しがちです。今一度、顧客が求めていることをしっかり理解したいと思います。 客観視点はどうする? プロダクトへの思い入れが強く、客観的なアウトプットの判断ができていないと感じています。製販一体の良さを活かしつつも、プロダクトへの関与がアウトプットの客観性を損なうリスクについても認識し、現在の訴求内容が自社視点に偏っていないか顧客視点で見直したいと思っています。各アウトプットが顧客にどのようなイメージを与えているかを整理し、望ましいイメージかどうかを検討していく必要があります。 根拠説明は何かしら? まずは自らが根拠を持ってターゲティングを説明できるようになりたいです。受注分析に加えて、3C分析やSWOT分析を活用し、内外の状況を整理した上で、根拠を持ったターゲティングを行いたいと考えています。その後、チーム全体で統一したターゲティングを共有し、ターゲット優先度の調整を行うことが重要だと思います。チームとして共通の理解を持つことが目標です。 イメージ整理は正しい? 顧客に与えたいイメージについて、ポジショニングを整理し、明確化することが必要です。まずは各アウトプットが顧客に与えているイメージを把握し、それが望ましいものであるかをポジショニングと照らし合わせてブラッシュアップしたいと思います。

戦略思考入門

技術が拓く戦略の全体像

現在地とゴールは? これまで一週間ごとに学んできたフレームワークや概念が次第に結びつき、戦略思考の全体像が見えてきたと感じました。全体像を捉える過程では、まず自分の「現在地」を正確に把握し、目指すべき「ゴール」を明確に設定することが重要だと理解しました。 取捨選択の意義は? ゴールへの道筋では、学んだ差別化の手法を活用し、何を行い何を捨てるかという取捨選択が不可欠です。これらの判断やプロセスの根底には、市場の動向や事業の経済性―具体的には規模の経済性、範囲の経済性、ネットワーク経済性といった要素―を捉える視点があることを再認識しました。複数のフレームワークを駆使することで、一連の流れがより明確に整理されると感じています。 市場メカニズムは? また、市場のメカニズムを理解することは、競争の力学や自社の強み、そして新規参入の際の機会や障壁といった辺りについて、深い洞察を得る上で非常に意義あるものでした。こうした知識は、戦略立案の際の差別化や取捨選択の判断、さらには最終的なゴール設定に対しても、客観的で効果的な意思決定を下すための基盤となります。 技術は手段か? 一方で、エンジニアとして身につける技術や知識は、目的そのものではなく、ビジネスで何を成し遂げるかという目標に沿って活用するための「手段」に過ぎないと痛感しました。技術的に正しい選択が必ずしもビジネスとして最適とは限らず、市場環境や利用可能な資源という文脈の中でその真価が引き出されるのだと感じます。 技術と目的の調和は? 今後は、「技術はあくまで手段である」という視点を持ちつつ、利益創出やコスト最適化などのビジネス上の目的と技術的取り組みとのバランスを意識していきたいと思います。エンジニアとして専門性を高めるために、さらなる技術習得や知識の深化に努め、多様なフレームワークを駆使して問題解決や価値創造に寄与できるよう、着実に「手札」を増やしていきます。 利益構造の理解は? また、自社の利益構造や業界全体の動向、市場のメカニズムをより深く分析することで、技術や知識がどの場面で最大の効果を発揮できるかを見極め、その「ビジネスの文脈」を正確に理解していくことも大切であると感じました。 学びをどう活かす? これらの学びを基に、具体的なビジネス課題や目指すべきゴールに対して、最適な技術と知識を適切なタイミングで選択し、実際の行動に移すことで、事業に主体的に貢献していけると確信しています。

データ・アナリティクス入門

仮説で拓く学びの道

分析の基本は何? 本資料は、分析を比較の視点から行い、仮説思考を持って問題に取り組むための考え方と手法を示しています。分析の要点として、プロセス、視点、アプローチの三つの軸が必要とされ、各軸が互いに補完しながら、より深い理解を促すことを意図しています。 プロセスをどう考える? プロセスでは、まず目的や問いを明確にし、その問いに対する仮説を立てます。次いで、データを収集し、分析によって仮説を検証するという流れが求められます。 視点と工夫は? 視点については、インパクト、ギャップ、トレンド、ばらつき、パターンといった観点からデータを捉え、それぞれの側面から情報を整理していきます。一方、アプローチでは、グラフ、数字、数式などを用いて、情報を視覚的かつ計量的に表現することで、理解しやすくする工夫が大切です。 可視化はどう? 比較のための可視化手法としては、データの特徴を一つの数字に集約する方法、グラフ化して目で捉える方法、そして数式に集約するアプローチがあります。これにより、データの持つ意味がより明確になります。 代表値は何? また、データを見やすくするためには、代表値と分布の確認が有効とされています。代表値としては、単純平均、加重平均、幾何平均、中央値などがあり、一方、ばらつきを見るためには標準偏差が活用されます。特に、95%のデータが含まれるという2SDルールは、分布の確認において重要な指標となります。 契約単価の意味は? 具体例として、【1】の契約単価の場面では、相加平均を用いた結果、受注率などの違いが十分に反映されず、平均値が大きく見えてしまうという事実が挙げられます。そのため、加重平均を用いることで、感覚に近い平均単価が算出できる可能性が示唆されます。 成長率はどう考える? また、【2】の成長率の場面では、合計の成長率を足して年数で割る方法が用いられていましたが、こちらは幾何平均を利用するアプローチが適切です。具体的には、(1+x)^2=◯年後の売上/スタート年の売上という考え方に基づく計算が求められます。 計算見直しは? これらの考え方を踏まえ、Q2では【1】と【2】の実際の計算を見直し、過去に作成したデータを再評価する行動を取る必要があります。また、平均値の計算方法一覧を見える場所に保存し、必要な際にすぐに確認できるようにすることで、定着した学習行動が実現されることが期待されます。

データ・アナリティクス入門

複数仮説が照らす未来への一歩

仮説の意義は何? 仮説とは、ある論点に対する一時的な答えであり、課題解決のプロセスではまず「what(課題の特定)」を行い、その後「where(どこに問題があるか)」を考えることになります。 問題点はどこ? どこに問題があるかを検討する際、ポイントは以下の2点です。まず、必ず複数の仮説を立て、いずれかに固執しないようにします。次に、各仮説に網羅性を持たせることが重要です。今回の学びでは、例えば「レッスン内容」「レッスン代金」「立地や日時」「販促方法」といったサービスの各要素をあらゆる角度から洗い出すイメージでした。また、3Cや4Pといったフレームワークに触れることで新たな視点を得ることができました。 仮説の種類は? さらに、仮説には主に2種類があると学びました。ひとつは、ターゲット層の拡大などの結論に関する仮説、もうひとつは問題の原因や解決策を具体的に検討する問題解決の仮説です。後者は「where:問題の箇所を仮定する」「why:その原因を推測する」「how:解決方法を検討する」という順序で考え、筋道を立てる手法でした。 アンケート結果は? 社内で実施する教育後のアンケートでは、解答直後にアプリが提示する円グラフから、何が問題か(what)の部分を大まかに把握することができます。その後、回答者の属性や状況を踏まえ、できるだけ網羅的に「where」を洗い出すために仮説を検討します。4Pの観点では、教育内容、コスト(ここでは時間や労力)、実施方法や時間配分、連絡手段などを考慮した仮説となります。 事前整理の効果は? このように事前に分析の視点を整理しておくことで、設問作成もスムーズに進められ、必要なデータを最初から集めやすくなると感じました。 結論仮説の重要性は? また、業務で用いている仮説の中では、特に結論に関する仮説が重要であると改めて実感しました。直近で実施する意識調査の分析にあたっては、複数の結論の仮説を立て、その理由を深く考えた上で、使用するデータ項目を決定し、最終的に対策案を立案する流れを実践する予定です。最終提出前には、自分の仮説が他の仮説と矛盾しないかも確認し、他者の視点を意識することで、更なる精度向上を目指したいと思います。 実践活用はどう? また、6月に実施する教育後アンケートでは、これまでの気づきを反映し、より実践的な思考ツールとして活用できるよう努めていきたいと考えています。

デザイン思考入門

実践をカタチに!先輩の学び

仲間とどんな刺激? グループワークやLIVE授業では、仲間のプロトタイプを拝見し、紙で模型を作成したり、AIを活用して画像やプレゼン資料を作成する様子に大変刺激を受けました。体調不良でプロトタイプの準備が十分にできなかったことには申し訳なさも感じましたが、実際に目で確認することで、ユーザーがどのように使うか具体的にイメージでき、そこから自然に議論やフィードバックが生まれて次のプロトタイプへとつながっていくと実感しました。 店舗改善はどう進む? 店舗オペレーション改善業務においては、お客様や従業員といった各ユーザーを中心に「店舗のあるべき姿」を考える際、デザイン思考を取り入れていきたいと考えています。特に、以下のポイントを意識して実践しようと思います。 共感で何を掴む? まず、①共感~課題定義の段階では、インタビュー時にコーディングを活用し定性分析の精度を高めるとともに、全体向けに抽象的な解決策を求めるのではなく、ペルソナを設定して特定のニーズに絞ることで、明確で具体的な課題を定義します。また、カスタマージャーニーマップを用いてユーザーの思考や感情を可視化するため、自ら体験することが有効であると考えています。 発想で見える未来? 次に、②発想(イデーション)では、質より量を意識し、多くの新しいアイデアを生み出すために楽しい雰囲気でブレインストーミングを実施します。ダブルダイアモンドの考え方を念頭に、多くのアイデアを発散させるとともに、SCAMPER法を活用して他にない視点を積極的に取り入れるよう心がけます。 形はどう作る? そして、③プロトタイプ~テストの段階では、モノだけでなくサービスやオペレーションの動きなど、形のないものでも「まずは形にする」ことを重視します。プロトタイプはスピード感を持って繰り返し作成し、最初から完璧を求めずに改善を重ねることが大切だと感じています。 成果共有はどうする? 自身の業務では、インタビューや観察、ブレインストーミングの機会が多いため、今回学んだ視点や方法を早速取り入れ、メンバーへ共有していきたいと考えています。また、プロトタイプ作成において「まずは形にする」「スピーディーに」「繰り返し行う」という姿勢を、これまで以上に意識するためのスケジューリングから始めていくつもりです。楽しい環境で多くの発散を促すことが、新しいアイディアを生む鍵であり、その重要性をメンバーにも伝えていきたいと思います。

クリティカルシンキング入門

データ解析で見つけた学びの旅

情報をどう分解する? 情報を解析するためには、その情報を分解する方法を学びました。まず、解析する全体の情報を定義します。このとき、いつからいつまでの情報を扱うのかを確認することが重要です。その上で、単に機械的に分けるのではなく、なぜそのように分ける必要があるのかを考え、複数の視点から情報を分解します。一つの視点での分解では、漏れや重複がないかを確認します。また、時間や場所を考慮したプロセスの分解を行い、比率や分布、変化率などを表計算で工夫することで、情報の正確な分解が可能になります。最初は大まかに分解し、解像度を上げるように進めます。 医療データ分析のポイントは? 医療業界のデータ分析について、二つの要点を実施します。まず、新規紹介患者数の分析です。2018年から2024年を対象にし、この期間には特に2020年から2023年のコロナ禍の影響を考慮する必要があります。データを患者の年齢、性別、疾患別、および病院の診療科や紹介元医療機関の規模(病院、地域クリニック)、さらには緊急性で分解し、変化率を算出します。これにより、患者属性や病院要因が新規紹介患者数に与える影響を明らかにし、コロナ禍による変動を正確に分析します。 外来患者満足度はどう評価? 次に、外来患者満足度調査の分析を行います。毎年実施されるこの調査の結果をもとに、単年度での解析のみならず、経年変化を評価して改善の有無を把握します。回答者を年齢、性別、通院歴(初診、再診)で層別化し、通院プロセスを受付、診察、待ち時間、会計などに分解して感想を解析します。過去3年のデータを用いて変化率を算出し、患者満足度の変化を定量的に把握します。これにより、外来プロセスにおける成果や改善点の特定と評価を行います。 ① 新規紹介患者数の分析では、2018年から2024年のデータを収集します。収集の際には、層別分析ができるように、患者データをリストアップし、疾患分類や医療機関の規模の基準を明確にします。整理されたデータは、解析しやすいように専用シートにまとめ、欠損データの程度を確認して、その分解が有意義であるかどうかを評価します。 ② 外来患者満足度調査の分析では、過去3年のデータを収集し、年齢や性別、通院歴、通院プロセスに基づいて解析できるようデータを整理します。また、来年度以降のアンケート項目や質問順序の見直しを行い、「何を解析するべきか」「なぜ解析するのか」を明確にした上で設計を行います。

戦略思考入門

社内で即実践できるROI分析と戦略設計の秘訣

ROIの重要性とは? ROI(費用対効果)の考え方について学びました。私たちの社内では、案件ごとの稼働率をPowerBIなどを使って分析していますが、手元での試算も有効だと感じました。特に、自分の目の前の業務に活かすためには、小規模な試算も役立つと実感しました。 「捨てる」決断の基準は? 「捨てる」という決断については、客観的指標に基づいて行うことの重要性を学びました。例えば、ROIに基づく費用対効果が低い案件、取引先の成長率、取引規模、人件費などの数値データをもとに判断する必要があります。勘や経験に頼るのではなく、常に数値を基にした思考が必要だと認識しました。 なぜ本質を問い直すのか? 過去の手順や資料を無意識にコピペして使うのではなく、その本質を見つめ直すことが大切です。なぜこの手順が必要なのか、このデータは何のために用意しているのか、といった本質を問い直しながら作業を遂行することが、自身の作業効率を高め、さらに自身のROIを向上させることに繋がります。 トレードオフで優先すべきは? トレードオフの考え方についても学びました。「コスト・リーダーシップ戦略」か「差別化戦略」を重視するかの意思決定が重要です。バックオフィス業務においても、制度設計の際に費用対効果に注力すべきか、差別化戦略に注力すべきかの二つの視点を比較して戦略を考える機会があると感じました。戦略とは意思決定に基づいた行動計画を立てることですので、優先順位の設定と、個人と組織の視点をすり合わせることが重要です。最終的には、それらの最大化ポイントを見つけ、ブレークスルーとなる施策を検討していきたいと思います。 どのようにイシューを設定する? 作業を開始する前に、まずはイシューの設定を行います。過去の資料はあくまで参考にし、その時々の最適化を意識してアップデートを目指します。 数値で目的を明確にするには? 戦略を立てるためには、経営層とのディスカッションを通じて会社の意思確認を行い、目的を明確に引き出すことが必要です。客観的データに基づく情報を集め、それを元に判断を仰ぎます。感覚に頼らず、数値で具体的に意思を引き出す工夫を心がけます。 トレードオフの価値をどう探る? トレードオフの考え方は、相反する要素を並べることから生まれるのかもしれません。どんな「効用」があるのかという要素を洗い出す作業を今後も行っていきたいと思います。

データ・アナリティクス入門

データに宿る成長ストーリー

全体の流れはどう? 全体の流れとしては、WHAT→WHERE→WHY→HOWの順で進める点が印象に残りました。ただ単にデータを集めるのではなく、ひとつひとつの分析がストーリーとして意味を持つように、傾向をしっかり掴むことが大切だと感じました。 問題は明確か? まずWHATの段階では、今解決したい問題を明確にし、目標となる結論やイメージをもっておくことが重要です。何のためにデータを扱うのか、最初に目的をはっきりさせることで、分析全体の方向性が定まります。 どの候補を選ぶ? 次にWHEREのステップでは、複数の候補を出し、解決に役立ちそうなポイントやデータが取得可能かを検討します。単独で見る方法や、ツリー・組み合わせといった整理手法を用いながら、どの観点に重点を置くかを決めていくとよいでしょう。 原因は探れた? さらにWHYのフェーズでは、考えられる原因をできるだけ多く、また網羅的に仮説として挙げることが求められます。どんな要素が問題に影響を及ぼしているのか、広い視点で捉えることが分析の精度を高める鍵となります。 数値は何を示す? また、データを見る際には実数と比率の両面から代表値などの数値に注目し、明らかにすべきポイントを意識する必要があると再認識しました。どのデータが問題解決に直結するのかを見極めるために、どんな情報をどう加工すべきかを事前に考えておくことが重要です。 目的は明確に? 特に、日々の業務では「言語化しなくても大丈夫」という考えに陥りがちですが、データを扱う際には必ず「何をしたいのか」という目的を明確にすることが不可欠だと感じました。また、データ収集時にも最終的なアウトプットのイメージを持つことで、やみくもな収集を避け、意図のあるストーリーを先に構築する姿勢が大切です。 フォーマットは有効? 今後は、以下のフォーマットを活用していきます。まず、解決したい問題を最初に記述し、次にストーリーや考え方、データの集め方・分析方法の全体像を示します。その上で、WHAT、WHERE、WHY、HOWの各パートを用意して進める手法を徹底していきたいと思います。 仮説は多角的? 最後に、仮説思考における「複数と網羅」という視点が非常に印象的でした。インパクト、ギャップ、トレンド、ばらつき、パターンなど、さまざまな角度から物事を見る姿勢は、今後の成長に大いに役立つと感じています。

クリティカルシンキング入門

問いが変わる!思考革命のヒント

なぜ問いが大切? 今週は、クリティカルシンキングの重要なテーマである「今ここで、答えを出すべき問い=Issue」と、本質的な課題を捉える問いの立て方について学びました。私はこれまで理解しているつもりでしたが、実際にはできていない部分があると再確認し、反省しています。 どの問いが思考を導く? 特に印象に残った点として、「どのような問いを立てるか」がその後の思考を規定し、問いによって考える方向性が変わってしまうことがあります。講義の事例を通じて、ものごとを単一の視点で捉えてしまうと、全体像を把握できず、本質的な課題の発見が困難になることを理解しました。本質的な課題を解決するためには、全体を俯瞰して正確な問いを立てることが重要であり、問い続けることの大切さを実感しました。 どうして逸れやすい? また、「Issueは意識しないと逸れてしまうもの」であることも学びました。問題が何であるか、イシューを明確かつ具体的に特定することが重要です。これまでの経験を振り返ると、議論の中でイシューから逸れることが何度もありました。最優先の問いを意識し続けることが、課題を解決する上で重要です。視覚化することで意識を高め、仮に逸れてしまっても原点に戻る努力をする必要があります。 どう本質を問いかける? この考え方は、会議や顧客課題の解決、プロジェクトに関する調査や考察、データ分析の場面で活用できます。どのようなシーンでも、まず見えているものをそのまま受け入れず、本質を問いかけることが重要です。そして、3つの視点「視点」「視座」「視野」を用いて全体を俯瞰し、問いを続ける意識を持つことが必要です。特に会議では、話が流れたり論点がずれることがありますが、イシューを確実に押さえつつ会議を進行することが重要です。 日常でどう実践する? 業務だけでなく日常生活でも、まずは意識することから始めて、習慣化していくことを考えています。「Issueを明確に特定する」「3つの視を活用して全体を俯瞰する」「問い続ける」「視覚化して意識し続ける」「逸れても軌道修正する」など、これらを実践していきたいと思います。特にニュースの記事などを読んで気になる内容があれば、改めて本質を問いかけ、情報不足を補ったうえでイシューを特定し、友人や家族と議論することを心がけたいです。また、読書や自己分析の際にも活用し、今年中には少なくとも1回は実践してみたいと考えています。

マーケティング入門

顧客目線で創る選ばれる魅力

顧客は何を求める? マーケティングにおいて、顧客中心で考える重要性と、思考の手順や考え方を学ぶことができました。自分が売りたいものを作るのではなく、顧客が本当に求めるものを提供することが鍵であり、顧客の悩みを解決する商品が魅力的な価値へと昇華していく点が印象的でした。 ターゲット選定は? まず、「誰に売るのか」を明確にすること、すなわち市場をセグメント化し、ターゲットを絞り、ポジショニングを行うSTPマーケティングの重要性を学びました。さらに、どんなに同じ商品であっても、ネーミングやパッケージ、キャッチコピーなどの見せ方を変えるだけで売り上げが大きく変動することに気づきました。 体験価値を感じる? また、顧客の体験に着目し、機能的な価値だけでなく情緒的な価値をいかに創出するかという視点も大切だと感じました。日常的に政治や経済、社会、テクノロジーの動向を意識しておくことが、マーケティング戦略を立てる際には非常に有効であると学びました。 戦略事例はどう? 具体的な事例を通じて、事業参入時にはターゲティングや顧客情報の深堀、プレゼンテーション、プロモーション、価格戦略、そして差別化戦略など、マクロとミクロの多方面から戦略を考える必要性を実感しました。 どう魅力を創る? さらに、ただ売るのではなく、顧客に「選ばれる」商品を作るためには、顧客が「欲しい」と感じる価値をどのように創造していくかが重要です。会話や行動の観察を通じて、心理や欲求を深く理解することが、商品の魅力を引き出す手がかりになります。 独自魅力は何故? デザインやネーミングにこだわり、既存の機能や価格だけではなく、「この商品だからこそ選びたい」という独自の魅力を打ち出すこともポイントです。さまざまな感性を取り入れることで、ブランドの世界観を明確に表現し、顧客に印象づけることができます。 競争をどう回避? 無駄な価格競争を避け、自社の強みを活かすためには、市場分析をフレームワークを用いてしっかりと目標を設定し、自社の強み同士を掛け合わせることで他社との差別化を図ることが求められます。 ブランド持続戦略は? 最後に、持続的なブランドの成長を実現するためには、顧客が求める価値を提供し続け、自然と選ばれるブランドを築く姿勢が必要です。競争に走るのではなく、独自の価値を磨き続けることが、長期的な利益獲得につながるとまとめることができます。

データ・アナリティクス入門

比較が拓くデータの新常識

データ比較はどう進める? 分析の基本原則は「比較」であり、まずはデータを比較する目的に立ち返ることが大切だと感じました。データ収集の前に仮説を設定し、その仮説を検証していくプロセスの中で、データをどのように加工して示すかという点が今回の学びのポイントでした。加工の視点としては、大きく代表値と散らばりの2つに分けられ、代表値には単純平均、加重平均、幾何平均、中央値があること、そして散らばりについては標準偏差で表現されることを学びました。 外れ値の対応はどうする? 今までは単純平均しか扱ったことがなく、重みを考慮した平均やべき乗を利用した手法は初めて触れる内容でした。また、平均値だけでは捉えきれない外れ値に対しては中央値を用いることで対応する方法がある点も新鮮でした。標準偏差については、なぜルートがつくのかという計算過程が理解でき、正規分布の場合にデータの約95%が±2個分の範囲に収まるという納得感を得ることができました。これまで平均を取るだけで思考が止まってしまっていた部分を、散らばりの視点からデータ活用の具体的なイメージに結び付けることができました。 移住データで何が見える? また、人口減少対策において活用される移住者データを分析することへの関心が高まりました。各市町村の移住者データを様々な属性で分析し、特に年齢や家族構成の散らばりを調べることで、どの施策に注力すべきかを推測するひとつの手法となり得ると感じています。現状、移住促進施策はUターン促進とIターン促進の大別がなされており、例えばUターンでは地元を想う集まりの取り組みを強化し、Iターンではボランティアや副業などにより継続的な関わりを持つ関係人口への支援を強化するという方針です。こうした大まかな区分に加え、より具体的な属性の分析が進むことで、移住理由を数値的に捉え、具体的な施策検討に役立てることができそうです。 今後の分析計画は? 今後は、所管部署に対して詳細な個別データの入手が可能かどうか問い合わせる予定です。データが手に入れば、エクセルを用いた分析に取り組みたいと思っています。特に県全体と沿岸地域の違いを明らかにすることで、一緒に施策を進める市町村の担当者や移住コーディネーターの方々の取り組みにも影響を与えられるのではないかと感じています。5月20日(火)に、所管部署の担当者が意見交換に来訪する予定のため、その際にデータ入手の依頼を進めるつもりです。

データ・アナリティクス入門

比較で見える、成長の瞬間

分析の基本は? 分析の本質は「比較」にあります。まず、分析は①プロセス、②視点、③アプローチの3つの軸で進めることが基本です。プロセスは大きく4つのSTEPに分かれます。まず目的や問いを明確にし、その問いに対する仮説を立てます。次に、既にあるデータや新たに収集する情報(見る、聞く、行う)を活用してデータを集め、最後に分析によって仮説やストーリーを検証していきます。データ収集時は、サンプリングバイアスや設問設計の影響に注意し、適切なA/Bテストの実施も視野に入れます。 重要視点は何? 次に、分析を行う際に重要な視点は5点あります。まず、インパクト:どの程度の影響があるかを把握し、優先順位をつけること。次に、ギャップ:比較対象や軸を明確にし、どの部分が異なるのかを確認すること。さらに、トレンド:時間の経過による変化の傾向を把握し、異常な部分を見つけること。加えて、ばらつき:全体の分布がどれだけ偏っているかを平均値や中央値などで見ること。そしてパターン:全体や変曲点から法則性を読み取ることが大切です。 グラフの工夫は? また、アプローチとしては、グラフや数字、数式を用いてデータを視覚化する手順があります。まず仮説と伝えたいメッセージ、次に比較対象を明確にし、どのグラフを使用するかを検討します。一般的な項目の比較では横棒グラフやウォーターフォールチャート、時系列の変化を示す場合は折れ線グラフや縦棒グラフ、構成や分布を表すにはヒストグラムや円グラフ、相関関係を示すには散布図が有効です。横棒グラフは特に多用されますが、加工に手間をかけることでより分かりやすくなります。 日常の見直しは? また、日常の業務や振り返り、目標設定・計画立案において、MECEや層別分解といった手法を使いながら、固定観念や偏った思考を見直し、仮説思考を鍛えることも重視しています。社内では、数字や思い付きだけで次を考えるのではなく、定量・定性データ分析の手法を共有し、分析は「比較」に基づくという前提と、意思決定を目的とするという考えを全員で理解しています。この目線合わせのもと、各種フレームワーク(たとえば3C、クロスSWOT、セグメンテーション/ターゲティング/ポジショニング、4Pなど)を取り入れながら、What/Where/Why/Howのステップを踏んで分かりやすいビジュアル資料を作成し、あるべき姿を説得力ある形で提案できるよう学び続けています。
AIコーチング導線バナー

「分析 × 視点」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right