戦略思考入門

視座を高め、課題を多角的に捉える転機

戦略思考とは何か? 戦略思考とは、「物事の本質を見極め、目標を効果的に達成するためにシステマチックに考える」ことを指します。これには、大局観を持ち、情報をバランスよく収集・分析することが求められます。この広い視点での情報収集にはフレームワークが役立ちます。フレームワークを活用することで重要なポイントを包括的に捉え、広範囲で情報を整理することができます。また、異なるフレームワークを使うことで、さまざまな切り口から情報を収集でき、問題を網羅的に捉えるには、それぞれの整合性とバランスも重要です。 問題を話し合う際の注意点は? 問題について話し合う際の注意点としては、以下の三点が挙げられます。第一に、経営者視点で考えること。第二に、ジレンマを過度に恐れないこと。第三に、他者の意見にしっかり耳を傾けることです。 全社視点の重要性は? 全社的な視点で捉えた場合、自分の部署の仕事にはさまざまな意味合いがあります。これには、新規顧客の獲得、顧客の囲い込み、安全で安心なお買い物の提供、商品のプレゼンテーションの場の提供、そして低価格の実現といったものがあります。特に、コストの削減は常に重要な課題です。コスト、品質、納期の三つの要素の均衡を保ちながら業務を進める必要があります。 海外業務移行の課題は? 現在、私の部署では海外現地法人への業務移行に取り組んでおり、課題となっています。業務は専門性が高く、各国現地法人のみで完結するのは難しい状況です。売場で使用する陳列什器も種類が多く、日本の業者でも習熟には時間を要します。さらに、CAD操作や建築知識も必要であり、業務の難易度が高いです。 優先課題の明確化はどうする? まずは、高い視座でネックポイントを洗い出すことが重要と感じました。現在の課題が本当に効果的なのか、他に優先すべきことはないのか、多面的な視点で捉えることから始めるべきだと思います。一人で考えていると視野が狭くなるため、自部署のメンバーを巻き込み、取り組むべき課題を明確化していきたいです。 AIチャット活用の可能性は? 適切なフレームワークの選択がまだ難しいため、AIチャットを利用して課題に対する適切なフレームワークを提案してもらうのも良い方法ではないかと考えています。

アカウンティング入門

数字が築く信頼と説明の力

会計は何を伝える? Week1の学びの中で、最も印象に残ったのは、アカウンティングが単に数字を扱うだけでなく、説明責任を果たすための手段であるという点でした。財務報告は、顧客や投資家にビジネスの実態や判断理由を伝え、信頼を得るプロセスであると実感しました。数字の良し悪しを評価するだけではなく、その背景や意味を詳しく説明することが信頼構築につながると気づかされました。 数字の背景は? たとえば、売上増加が一時的なキャンペーンによるものか、リピート顧客の増加によるものかで意味合いは大きく異なります。こうした背景を説明することが、単に数字で語る以上に重要だと感じました。 業務効率化の目的は? 現在進行中の経理業務効率化プロジェクトでは、なぜその処理が必要なのかを明確にするため、処理フローを図解し、関係者ごとの視点で要点を整理した説明資料を作成しています。今後は、売上推移のグラフに要因分析のコメントを加えたり、プロセス毎の処理件数を可視化したりすることで、財務データとその意味をまとめ、現場の改善活動に活かしていく予定です。 説明責任の価値は? この考え方は、経理業務の効率化プロジェクトや月次報告資料の作成、説明の場面で特に役立つと感じています。社内の営業部門やマネジメント層に対して、業務成果や処理の背景をしっかりと説明する際にも、アカウンティングの「説明責任」の視点を活用したいと思います。 資金繰りの背景は? また、「なぜこのフローが必要か」や「なぜこの数値になったか」を、単なる報告に留まらず、損益計算書や貸借対照表の視点と結びつけて説明することで、たとえば特定の対応がどのように資金繰りに影響を与えたかといった具体的な効果を伝えられるようになると考えています。 処理フローの必要性は? そのため、まずは処理フローと財務数値との関連性を整理し、簡単な図や表で関係者に分かりやすく共有することが重要です。さらに、毎月の報告書には、数値の背景にあるビジネスの動きを具体的にコメントとして添えることを心がけ、数字の「正しさ」だけでなく「意味や背景」を丁寧に説明する姿勢を継続していきたいと思います。 Week1は何感じた? Week1の内容に関しては、特に追加する事項はありません。

データ・アナリティクス入門

なぜ?が未来を変える学び

なぜ問題は起こる? まず、問題が発生した際にすぐ解決策(HOW)を考えるのではなく、「なぜこの問題が起きたのか(WHY)」に立ち返る姿勢が大切だと学びました。たとえば、ある教育機関のケースでは、一見複数の悪い数字が散見されたものの、詳しく分解すると根本原因が一つに絞れるという発見がありました。表面的な現象だけでは的確な対策が打てないため、まず原因の深掘りが必要だと痛感しました。 ロジックで整理? また、ロジックツリーやMECEといったフレームワークを活用することで、論点整理に漏れや重複がなくなり、複雑な課題もシンプルな要素に整理できる点が印象的でした。これにより、解決すべき具体的な課題が明確になり、自分がリソースを注ぐべき事柄に優先順位を付けやすくなります。 既存施策の強みは? さらに、課題を因数分解することで、単に解決すべき問題だけでなく、既存の施策から成果が出ている部分を見出すこともできると感じました。これは、改善活動のみならず、自分たちの強みを再確認する良い機会となります。加えて、自らの打ち手がどの部分にどのように影響を及ぼすかを理解することで、効果測定が容易になり、施策の評価や次のアクションの決定に大いに役立つと実感しました。 業務標準化の秘訣は? 来季、部署内で進める「各拠点の業務標準化」においては、まず運用の差異がなぜ生じるのかを徹底的に分析し、表面的な違いではなく根本的な要因(たとえばシステム設定やスタッフ教育、地域ごとの慣行など)を明確にすることがポイントです。さらに、標準化が進まない理由を大項目、中項目、小項目という階層構造で整理し、プロセス、人材、システム、ガバナンスといった視点から抜け漏れなく検討することで、優先的に取り組むべき課題が見える化されます。また、標準業務の順守率やエラー率など、具体的な効果指標を設定することで、改善のインパクトを把握しやすくなると考えています。 優先順位は何故? 実践の際は、課題の重要度や緊急度だけでなく、実現のしやすさという観点も加えて優先順位を決めることが不可欠です。現場で課題に取り組む際、皆さんはどのような基準やプロセスを用いているでしょうか。ぜひ、具体的な事例や経験をもとに意見を共有していただければと思います。

戦略思考入門

差別化戦略で勝ち抜く方法を学ぶ

ターゲットは何を見直す? 今回の学習を通じて、差別化について理解を深めました。差別化の戦略を立てる上で最も重要なことは、「ターゲットの明確化」であることがわかりました。 顧客視点で何を考える? まず、顧客にとって価値ある内容であるかどうかを考えることが重要です。そして、自社の業界だけに縛られず、顧客の視点から競合を考慮する必要があります。また、実現可能性や持続可能性についても検討が求められます。 競争の中でどう優位に立つ? 市場には必ず競合が存在し、争いは避けられません。体力勝負では効率が悪く、強者しか生き残れないことが前提です。そこで差別化を図ることにより、他社との違いを生み出し、自社の強みを活かして有利に戦い続ける可能性が高まります。 分析のポイントはどこか? 差別化のポイントとしては、情報や状況を整理し、不足のないように分析することが挙げられます。その際、フレームワークを活用して各種要素を整理することが推奨されます。 顧客需要はどう把握する? また、差別化を考案する際には、想定する顧客の需要を理解することが重要です。顧客像が明確でなければ、多様な意見に流され、決定的な戦略を欠いてしまいます。ターゲットを決定した後、競合を設定する際には自社の業界内だけでなく、広い視野で他業界も考慮することが重要です。このようにして、顧客視点でどの業界が競合になるのかを見極めることが求められます。 実現可能性はどう検証する? その上で、提案した施策が実現可能であり、持続可能かどうかも重要なポイントになります。特に、投資を継続できる内容であるかを考える必要があります。 強みにどう取り組む? 私は、今回の学びを活かして、まずはVRIO分析を活用し、自分の職場の強みを明確にしたいと考えています。具体的な強みを見出し、自分自身がどの方向に力を入れるべきかを見定め、職場内で意見を共有し、戦略を立てることに繋げたいと思います。 どのような訓練が必要? また、個人レベルでの考える訓練を続け、学んだフレームワークに慣れることを目指します。VRIO分析を通じて職場を分析しつつ、施策や行動計画を描く際に差別化のポイントを意識し、自分の中で確実に定着させるよう努めたいと思います。

クリティカルシンキング入門

MECE法で分かる問題解決の全貌と実践術

状況変化の把握方法とは? 状況の変化を把握するためには、「分ける」ことと「視覚化」がポイントとなります。「分ける」際には、複数の切り口を出し、機械的ではなく、目的に沿ってどのように分解すると状況が見えやすくなるかを考えることが重要です。この時に使える手法が「MECE(Mutually Exclusive, Collectively Exhaustive)法」であり、漏れなくダブりなく分けることを意識する必要があります。 MECE法の具体的な手法を学ぶ MECE法には次の3つの方法があります: 1. 層別分解:全体を定義して分ける(例:単価別、年代別) 2. 変数分解:一つの数字に対する変数を分ける(例:売上=客数×単価) 3. プロセス分解:分析対象の事象に関する全体のプロセスを考えて分ける(例:来店→注文→食事を運ぶ→食べる→会計→退店) 分解スキルの課題と対策 私はこれまでMECEの概念は知っていましたが、特に分け方がうまくできないと感じていました。上記の①〜③の手法を知ることができたのが一番の収穫でした。また、「他には?本当に?」と問いかけることで、分解の妥当性を検証することも重要だと感じました。 解約要因とその分析法は? 解約要因の分析: - 層別:子どもの年齢別、親の年齢別、世帯年収別、利用回数別、子どもの人数別 - 変数:アプリ利用状況=利用頻度×利用ゲーム数×1ゲームあたりの利用時間 - プロセス:契約→初期設定→初回利用→2回目利用→解約までの利用状況→解約→再契約 変数分解スキルを向上させるには? 変数分解のスキルアップ: 私は比較的容易に層別やプロセス分解の案は出せましたが、変数分解が特に苦手だと感じました。そのため、業務内外を問わず、日常生活で目にする数字を構成する変数が何かを1日に最低1つは考えていきたいと思います。具体例はすぐに思いつかなかったので、他の受講生の投稿や知人とのコミュニケーションを通じて課題を見つけていきたいと思います。 クリティカルシンキングを強化する クリティカルシンキングの基本姿勢: - 分解の切り口を検討する際に3つの視点を変えてみる。 - 出した結果に対して「なぜ」「本当に」「他には」という問いかけを行う。

戦略思考入門

未来を切り拓く戦略のヒント

未来をどう描く? 今週の学習で強く印象に残ったのは、戦略思考の本質が「未来を描き、逆算して今を選択すること」にあるという点です。戦略は単なる計画ではなく、最終目標を明確にし、それを達成するために必要な行動を整理する思考方法だと理解しました。特に「何をすべきか」「何を捨てるべきか」、そして「現状で不足しているものは何か」を見極めることが重要です。また、戦略思考には変化に対応する柔軟性も求められ、環境の変化や予期せぬ状況に備えて複数のシナリオを想定しておくことが不可欠だと感じました。この学びは業務のみならず、キャリア設計にも直結しており、10年後の自分を見据えた上で、今どのような挑戦をすべきかを考える枠組みとなっています。戦略思考を身につけることで、目的があるからこその選択を行ったと説明でき、意思決定に対する自信も深まると実感しました。 情報整理はどう? 今週学んだ戦略思考は、複雑な判断や情報の選別が求められる業務で有効だと感じています。特に、最終目標に向けて必要な要素を整理し、優先順位を決定する場面において効果を発揮すると考えます。例えば、情報収集や分析の際には、すべてのデータを集めるのではなく、目的に直結する情報を見極めることが大切です。また、環境変化や予期せぬ事態に備えて複数のシナリオを準備し、柔軟に対応することも必要です。具体的な行動としては、まず最終目標を明確にし、その達成に必要な要素を整理します。次に、「何をすべきか」「何を捨てるべきか」「現状で不足しているものは何か」を洗い出し、行動計画に落とし込むことが求められます。さらに、定期的に現状を振り返りながら仮説を検証し、計画を修正することで柔軟性を確保できます。 独自性の見つけ方は? また、今回の学びで「独自性(強み)を持つことの重要性」が心に残りましたが、自分自身の独自性を具体的にどう分析するか、その決め手となる視点がどこにあるのか、疑問も残りました。戦略思考の型は理解できたものの、具体的に自分に引き寄せる際にどの視点や方法で強みを見つけるべきかを知りたいと思います。他の受講生の皆さんがどのように自分の独自性を見極め、業務やキャリアに活かしているのか、その具体的な取り組みについて議論できればと考えています。

データ・アナリティクス入門

目的設定から始まる分析の旅

分析前に何を考える? 分析を始める前に、目的や仮説を明確に設定することが基本です。その上で初めて実際の分析に着手できます。データの加工については、AIの活用が効果的ですが、なぜそれを行うのか、また結果がどうであるのかという点については、人の意見が重要だと感じています。これまでの業務では、見やすさやわかりやすさに時間をかけすぎ、本質的な問いに対する回答が十分でなかったと実感しています。 定量データの違いは? 定量データには様々な種類があり、平均値を算出することが有意義な場合とそうでない場合とがあります。直感的には理解できるものの、理由を問われると具体的な説明が難しいこともあります。質的なデータか量的なデータかという違いよりも、それぞれの特徴をしっかりと認識しておくことが大切です。 条件比較、何を見る? データの比較を行う際は、本当に同じ条件で比較できているかどうかを確認する癖を身につける必要があります。なぜ複数のデータを比較するのか、比較から何が読み取れるのかを常に考えることが求められます。例えば、既存店舗における業績、顧客属性、サービス満足度のデータを用いる場合、その店舗の改善ポイントや、他店舗で活用できる内容を明らかにすることが重要です。また、将来予測に際しては、既存店舗のデータ分析が正しく目的を果たし、正確な判断につながることが、1年先の店舗運営における仮説や予測の精度向上、そしてリスクヘッジに直結すると考えています。 会議で何を共有? 会議や立ち話などの中で分析に関する話題が上がった際も、まずは紙一枚に目的、期間、どのようなデータが必要か、既存のデータなのか、どの部分から入手可能かをまとめることが大切です。その上で、依頼者と意見をすり合わせながら進めることが効果的です。 定性データは役立つ? また、定性データの活用についても重要な視点です。仮説設定の根拠や課題確認のため、まずは定性データに目を通す機会を十分に設けることが求められます。 AI活用の注意点は? 現時点では、AIの活用は基本的に注意が必要ですが、関係のない自作データなどを用い、どのようなデータの見せ方が効果的かを試行するなど、活用の視点から取り組んでみると良いと感じています。

データ・アナリティクス入門

仮説とデータ収集の極意に迫る

複数仮説をどう活用する? 仮説を考える際には、「複数の仮説を立てること」や「仮説同士に網羅性を持たせること」が重要です。その上で、仮説を検証するために必然的にデータを収集することが求められます。ケースの解説では「3C」「4P」が挙げられており、私が考えたケースの回答も結果として「4P」の視点に近かったですが、意識的に「4P」から発想したわけではありませんでした。どの場面でどのフレームワークを使用するべきか、まだ身についていないと感じましたので、今後はフレームワークを有効に使えるようにしたいです。 データ収集のポイントは? データ収集の際にも、仮説を持った上で臨むことが重要だと再認識しました。例えば、故障対応の増加で残業が増えているという問題に対して、「昨年と今年の故障件数」の比較ではなく、「1件あたりの対応時間」を比較する方が良いという解説を受けて、その認識が強まりました。 日常業務での仮説と分析 仮説を考え、必要なデータを収集し、分析することは日常業務のあらゆる場面で必要です。具体的には、「毎月の財務諸表の比較分析」、「毎月の営業活動の振り返り」、「毎週のユーザー数の動向分析(新規獲得率、解約率、更新率)」などが挙げられます。 中長期的視点での活用法 また、中長期的な視点を持つ業務では、年間の目標設定やその達成に向けての方法を考える際、中期的なビジョンを考える際に、フレームワークの活用が有効です。特に中長期的な視点では、その活用をより一層進めていきたいと思います。 データ自動化とフレームワーク整理 日常業務で必要なデータ収集は現時点では自動化されていますが、収集されたデータに漏れがないか、今一度チェックすることが大切です。また、仮説を立てる際にはフレームワークの活用が有効と感じていますが、どの場面でどのフレームワークが有効かを一度整理したいと思います。そのために、フレームワーク集の書籍を手元に置いておく、もしくはChatGPTにどのフレームワークを使うかを尋ねるという方法も考えています。 独自視点はどう持つ? ただし、フレームワークに頼りきりになると内容が似たり寄ったりになりがちですので、常に独自の視点がないかを意識していきたいと思います。

アカウンティング入門

オリエンタルランドで探る決算の秘密

オリエンタルランドの視点は? 今回、オリエンタルランドを題材に、P/L(損益計算書)とB/S(貸借対照表)を読み解くワークに取り組みました。まず、事業活動を考える際に、①顧客や企業、②提供価値、③価値提供のための活動、④経営資源といった要素を仮定し、それに基づいてP/Lの売上や売上原価、B/Sの資産を具体的に整理しました。このフレームワークは非常に分かりやすく、今後も活用していきたいと感じました。 売上はどう計上される? 売上については、想定通りアトラクションやショー、商品販売などの順で計上されていました。しかし、オリエンタルランドの事業セクションが分かれているため、どこまでを同社の売上として扱うかという点は検討の余地があると感じました。一方、売上原価に関しては、商品原価は想定どおりでしたが、同社の場合は人件費、減価償却費、施設更新関連費、ロイヤリティなども計上されていることに驚きました。一般企業では、人件費は販管費に計上されるため、この違いが印象的でした。 人件費の扱いはどう変わる? また、人件費の扱いに関して調べると、売上原価の製造費と販管費における販売費、一般管理費、研究開発費で分類されるのが一般的であることが分かりました。こうした知識を通して、財務3表の見方が変わり、各項目がどのような経営判断につながるかを考える良い機会となりました。 業界応用はどう考える? さらに、フレームワークを他の業界に応用する際には、顧客の特性や利用シーンなど具体的な側面に注目する必要があると感じました。売上原価と販管費の違いが粗利や営業利益にどのように影響を及ぼすかを理解することで、経営判断におけるコスト構造の分析にもつながると考えています。 実践での説明はどう進む? 今後は、この知識をもとに、実際の面談や決算報告の際に、事業活動とP/L、B/Sとの関連性を具体的に説明できるよう努めたいと思います。また、業界や同規模の企業との比較分析を通じて、より深い理解を得ることを目指しています。仕事以外では、複数の決算報告書を題材に事業活動を整理し、自分なりにP/LやB/Sを読み解く練習を続け、実際のお客様への説明機会も活用して理解をさらに深めていきたいと考えています。

クリティカルシンキング入門

分解のコツをつかむ!自ら動く学び方

「分解」とは何か? 物事を正しく理解するためには、「分解」が欠かせません。正しく分解するためには、「MECE(モレなくダブりなく)」な状態を維持することが重要です。「分解」は一見難しく思われるかもしれませんが、Who・What・When・Whereの視点で考えると、整理がしやすくなり、MECEの状態かどうかの判断も容易になります。 手を動かして得られるもの まずは実際に手を動かして「分解」を試してみましょう。仮に何も見えてこなかったとしても、それ自体に価値があります。「何も見えなかった」という事実を知ることも重要だからです。一工夫を加えながら手を動かし続けることが、「分解」するうえでの大切なプロセスです。 全体を定義する必要性は? 「分解」に着手する前には、必ず「全体」を定義し、それを周囲と共通認識とする必要があります。全体が定義されていないと、Aさんは2020年の顧客、Bさんは2021年の顧客というように、対象のズレが生じてしまいます。 分解が研修設計に役立つ理由 例えば、研修を設計する際にもこの方法が活用できます。「目的」を達成するために受講対象者という「全体」を定義し、Who・What・When・Whereの視点から分解していくことで、研修設計がスムーズに進みます。 売上予算管理でも「分解」は効果的 また、売上予算管理の場合、売上をどの要素が構成しているのかを分解し、チーム全体で共通認識を持つことが重要です。共通認識ができれば、予実差異を分析するときに問題の所在が分かりやすくなり、原因と対策の立案までのスピードが向上します。 議論が必要な場合の全体定義 議論が必要な場合、対象となる「全体」を定義してから話し合うことが重要です。問題が発生したときに、どこからどこまでの業務を対象とするのかを明確にしないと、議論が発散し収束しにくい傾向があります。 業務設計改善の出発点は? 売上を「分解」する際にも、事業部内で売上がどの要素で構成されているのかを洗い出し、チームの共通認識とすることが重要です。また、業務設計の改善においては、業務フローを書き出し、どの範囲を議論の対象にするのかを明確にするところから始めるべきです。

マーケティング入門

受講生の声に未来のヒント

自社魅力をどう分析? 既存のリソースを活用して新しいビジネス展開に取り組む力が求められます。その際、まずは顧客視点から自社の魅力を分析し、ライバル企業を狭い業種ではなく、広い服飾業界全体として捉えることが大切です。 製品方針は決まった? また、時代の変化に対応した製品開発と、要件定義を明確にした上での開発方針の策定が不可欠です。これにより、より実用的な解決策が生まれる環境が整います。 潜在ニーズを発見? さらに、顧客自身が気づいていないニーズを掘り下げる手法として、行動観察や個人インタビューを実施することが有効です。潜在的なニーズを把握することで、本当に必要とされるサービスや製品の開発が可能になります。 製品名はどう選ぶ? 製品名については、親しみやすく覚えやすい上、製品との整合性がありユニークな語感を持つ名前が望ましいと考えます。名称がユーザーに与える印象も、製品の魅力を左右する重要な要素です。 顧客課題は明確? ペインポイント、つまりお金をかけてでも解決したい課題を見つけ出すことも重要です。単に「あればいいな」というニーズではなく、実際に顧客が投資を惜しまない課題に焦点をあて、機械に限らず工場全体の課題として捉え、顧客への訪問インタビューを通じて具体的な問題点を明らかにする必要があります。 数値で説得できる? 実際、課題の中には費用をかけて解決したいものと、そうでないものが混在しています。例えば、工場向けの大型機械の場合、金銭や時間、人手という具体的な数値で示される課題は、比較的解決に向けた投資が行いやすいですが、中小企業の場合、得られる利益を正確に算出するのが難しいこともあります。そのため、例えば古い機械を更新する際に新製品の処理速度が2倍になるという具体例を用い、1時間あたりの利益や4年間での費用回収シミュレーションを示すなど、数値で分かりやすく説明する工夫が求められます。 担当部門を再考? 最後に、製品名の決定については、どの部門が担当するかも再考の余地があります。従来は機械開発担当が決めるケースが多いですが、ユーザーと近い部門が名称選定に関わることで、よりユーザーに響く名前が付けられるのではないかと感じています。

データ・アナリティクス入門

細かい分析が未来を創る

原因をどう捉える? 問題の原因は、全体のプロセスを細分化して考えることで把握しやすくなります。原因を明確にするためには、各工程ごとに何が起こっているかを順を追って分析することが有効です。 解決策は何だろう? 一方、解決策を検討する際は、ひとつの案に固執せず、複数の選択肢を用意して比較することが大切です。判断基準を設定しておくことで、より説得力のある解決策にブラッシュアップすることが可能になります。また、本質的な施策を比較検討する際には、A/Bテストが有効です。比較したい要素を明確にし、他の条件をできるだけ揃えることで、テスト結果を効果的に実施策へ反映させることができます。 数値分析はどう見る? 事前の動画では、WEBマーケティングの分析においてアクセス数(ページビュー、ユニークユーザー、流入数)、サイト内行動(ページの回遊数、平均滞在時間、直帰率、再訪問率)、広告効果(クリック率、CPA)、および効果測定(コンバージョン)といった数値の重要性が紹介されました。現代のマーケティング環境では、顧客の購買体験がSNSの影響で複雑化しているため、マーケティングミックス(4P)の視点も必要不可欠です。 仮説はどう組み立てる? また、仮説の立て方については、まず知識を広げることで情報を耕し、そこからラフな仮説を作成するという大きな2ステップが重要だとされています。さらに、5Aカスタマージャーニーのフレームワークを活用することで、サービスとの出会いからファンづくりまでの流れを効果的に生み出すことが可能になります。 テストの効果は? 商品の活用状況が悪い場合や解約が増加しているときの対策としては、ポップアップでの案内や電話窓口の資料の強化といったパターンに頼りがちです。しかし、日常的にアプローチ(訴求面)のテストを実施しておくことで、急な数値低下に直面した際にも、事前のテスト結果を活かして迅速かつ効果的な対応が可能になります。現在、A/Bテストを実施している場面もありますが、担当者の発案に頼るのみで、年間で数回程度に留まっています。今後は、各施策の企画段階からテストの仕込みを意識することで、より計画的な改善が期待できるでしょう。

「分析 × 視点」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right