デザイン思考入門

実践から紡ぐ学びの軌跡

チャット改善はどう進む? 社内チャットツールの使い勝手向上を目指し、ユーザーインターフェースの変更や新たな機能の追加を試み、実際のユーザーからのフィードバックを収集・分析する取り組みを行っています。この試作プロセスにより、より使いやすいツールへの改善が期待できます。 オンライン改善の秘訣は? また、顧客向けのオンラインポータルについても、製品情報やサポート情報が見やすく、アクセスしやすいようにデザインや機能の改善を試行中です。実際の顧客の意見を反映しながら、ユーザビリティの向上を図っています。 試作で何が変わる? デザイン思考の「試作」ステップを業務に取り入れることで、従業員や顧客のニーズに応じた具体的なソリューションの提供が可能となりました。さらに、ユーザーを巻き込むワークショップにより、彼らの視点やニーズを直接把握することができ、実用的な提案を行う基盤が整いました。 テストはどう効果? 加えて、デザイン思考の「テスト」ステップをCXソリューションの提案プロセスに組み込むことで、顧客の実際の使用状況や要求を的確に反映した提案が可能となり、提案内容の精度および顧客満足度の向上につながる見込みです。

データ・アナリティクス入門

ロジックで読み解く問題の核心

問題解決の流れは? 問題解決のステップは、まず「何が問題なのか」を明確にすることから始まります。具体的には、1.何が問題なのか?(What) 2.どこに問題があるのか?(Where) 3.何故問題が起きているのか?(Why) 4.どのように解決するのか?(How)の流れで整理されます。 現状と理想はどう違う? また、現状とあるべき姿や望ましい状態とのギャップを数値化することで、問題の大きさや具体性を把握しやすくなります。これにより、課題解決への道筋がより明確になると思います。 ロジックツリーは何故有用? さらに、問題分析の手法としてロジックツリーを活用するメリットは大きいですが、その際には感度の良い切り口を持つことが求められます。この感度の良い切り口とは、問題の細部に至るまで無駄なく、かつ重複なく整理するための視点であり、身につけるのが難しい部分でもあります。 経理作業は何を伝える? 最後に、毎月の経理や財務のまとめ作業を通じて、数値から様々な問題点や疑問点が浮かび上がることを実感しています。そこで、今回学んだMECEの考え方を取り入れ、ロジックツリーを用いてこれらの問題を体系的に分析していきたいと考えました。

データ・アナリティクス入門

多面的視点で掴む成長のカギ

原因を探るヒントは? 原因を探る際には、与えられたデータのみならず、プロセス全体に目を向けることで、より深い示唆を得ることができます。このアプローチは、問題に関わる要素とそうでない要素を分ける「対概念」という考え方にも通じています。 A/Bテストの重要性は? たとえば、WEB画面のUIUX検討時には、これまで担当者が一案に絞ってリリースしていたため、思い描いた効果が得られなかったという事例があります。今後は、複数の施策を同一条件下で比較するA/Bテストを活用し、データに基づいて顧客に響く施策を選定する手法に切り替えていきます。 営業プロセス見直しは? また、営業活動による収益最適化のデータ分析では、営業プロセスが曖昧に分類されていたため、正確な要素抽出が困難でした。そこでフロントメンバーへの丁寧なヒアリングを実施し、プロセスを適切に分割することで、各要素を明確に特定し、分析精度を向上させています。 テスト実施の秘訣は? さらに、A/Bテストの実施にあたっては、期間設定や施策パターン数の考慮が重要なポイントとなっています。これらの条件をどのように整えるかが、テストの効果を左右する鍵となるでしょう。

アカウンティング入門

営業利益と経常利益の新発見

コストと利益の違いは? PLの分析を通じて、企業が提供する価値と、その価値を実現するためにどのようなコストがかかっているのかを把握できることが理解できました。また、これまで以上に営業利益と経常利益の違いを明確に認識することができました。 なぜ経常利益に注目? メーカーで働いている中では、日常的に営業利益に注目していましたが、経常利益についてはあまり意識していなかったため、今回の学びは大きな収穫となりました。経営や投資家の視点から見ると、本業の儲けである営業利益はもちろん重要ですが、企業の存続性や継続性を考えると、経常利益への着目も非常に大切だと感じています。 同業比較の意義は? さらに、同業他社のPLと自社のPLを比較することで、どのような違いがあるのか、また自社事業の改善に繋がるヒントが見つかるのではないかと考えています。自社の課題とされている部分が、同業他社との比較でどのように数値として現れるのかを確認することも、今後の課題解決に役立つと期待しています。場合によっては、課題と思っていた点が業界全体に共通するものだったという可能性もあり、具体的には固定費の分析などを通じてその点を明らかにしていきたいと考えています。

クリティカルシンキング入門

問いから始まる学びの軌跡

問いの重要性は? 「問い」から始めることの重要性を改めて感じました。まず、最初に問いを立て、その問いを共有することが大切だと理解しました。また、問いは立場や視点によって異なるため、誰にとっての問いなのか、何が求められているのかをしっかり見極めなければならないと実感しました。 記憶はどう保つ? また、一度学んだことは反復練習をしなければ忘れてしまうという教訓を得ました。意識的に時間を設けて、学んだ内容を繰り返し実践することで、実際の業務に効果的に生かすことができると思います。 どう企画に繋げる? 市場分析では、市場における問いを自分の立場を意識しながら考えることで、より具体的な課題の把握につながると感じました。一方、企画立案では、立てた問いをそのまま残しておくことで、企画のストーリーに筋が通り、納得性の高い企画が作成できると学びました。 練習はどう変わる? さらに、「問い」から始める練習を通じて、自分の思考の癖を自覚し、客観的な視点を持つことの大切さも理解できました。データを共有する際には適切に視覚化し、伝えやすいレイアウトを心がけること、そして現状の課題を的確に見極めながら進める姿勢が必要であると感じました。

データ・アナリティクス入門

分析で見える!自分の可能性を探る旅

分析目的をどう定める? まず、分析を行うためには、その目的を明確にすることが大切です。分析の核心は、物事を比較することにあります。適切な比較対象を選ぶ際には、「apple to apple」を意識し、時には目に見えないデータとも比較することが求められます。仮説を立てた上で、分析を進めることが重要です。また、分析結果を可視化する際には、その目的を常に念頭に置くことが求められます。 新しい業務の分析に必要な視点は? 新しい業務に取り組む際には、市場規模や競合他社、収支計画など、多岐にわたるデータを使用し、取り組む価値があるかどうかを分析します。コンサルティングなどの導入時においては、従来の定性的な説明に加え、コスト、業務効率化、収益への影響についてデータに基づく分析を行い、より説得力のある説明が求められます。 仕事の本質をどう理解する? 次に、「自分が何をしたいのか」を明確にし、自身の仕事の本質を正確に理解します。その上で、なぜ分析が必要であるのかを整理します。分析を始める前に仮説を立て、その仮説を検証するために必要なデータを収集します。最終的には、分析結果を適切に可視化し、周囲を納得させられるようにすることが重要です。

戦略思考入門

選択と差別化の成功と失敗を学ぶ

どうして失敗を重視? 規模の経済や多角化について、成功例だけではなく失敗例も学びました。「なんとなくよさそう」という選択肢に飛びつかず、「うまくいかないケースはないか?」を意識して確認する必要があると感じました。 補足はどう工夫? 総合演習では、情報が足りない時にどのように補うかを考えながら取り組みました。日常生活でも、安易に選択してしまうことがあるのかもしれないと感じました。選択するかしないかを広い視野でとらえ、その背景を分析し、メリットとデメリットを正確に把握する必要があります。 どう差別化実現? 現在取り組んでいるペーパーレス推進の中では、「捨てる」ことと「他社との差別化」を両立する施策を意識しています。業界内の動向だけでなく、他業界での先行事例も注視しています。「なんとなくよさそう」で判断せず、定量的データを用いて根拠のある提案を行うよう努めています。 何を見極める? 定量的データを活用し、同業界だけでなく他業界の事例も広く集め、自社に活用できる部分がないかを検討しています。その際、自社の差別化につながるかどうかという視点を重視しています。また、ペーパーレス実現後の影響も考慮した施策を構築しています。

戦略思考入門

意思決定の成功法則を究める旅

なぜ現状を分析する? 意思決定において、どの提案が適切かを判断するためには、単に「どのように」進めるかではなく、しっかりと現状を分析し、要因と提案との整合性を意識することが重要です。考え抜かれた提案であれば、たとえ失敗しても次に活かせる経験となります。しかし、分析が不十分なまま失敗すると、その失敗自体が他の要因となり、同じ過ちを繰り返す恐れがあります。 どう提案を裏付ける? 提案は単なる仮説で行うのではなく、まずは現状をしっかりと分析することが求められます。提案は理由によってしっかりと裏付けられ、5W1Hを意識した具体的なものであるべきです。フレームワークの使用は時に面倒に感じられることもありますが、その効果性が高いため、必要な場面では妥協せずに活用していきましょう。 どう柔軟に対応する? 提案や資料作成においては、意思決定者の視点を意識しながら、想定外の事態が起こった場合でも柔軟に対応することが求められます。初めから完璧を目指すのではなく、限られたリソースの中で妥協せず効率的に進めるよう努めます。高次元での妥協を意識しつつ、人の意見を取り入れ、集合知としての折衷案を生み出すことを心掛けることが大切です。

クリティカルシンキング入門

データ分析で見つけた新たな視点

データ加工とMECEは? データの加工や分け方、そしてフレームワークについて学びました。提示された情報をただ受け入れるのではなく、その背後に隠された情報を見抜く重要性を認識しました。特にMECEの活用方法について考える機会がありましたが、必ずしもMECEにこだわる必要があるのかという疑問も感じました。MECEが手段であり目的でないことを意識することが大切です。 戦略調査の目的は? マーケティング戦略の策定では、現在のサイトへの流入経路や登録経路を様々な角度から調査しました。特に、業歴が長い会社の場合、リピーター率が高いのではないかという仮説を立てて調査し、既存顧客からのフィードバックにどのような特徴があるのかも分析しました。また、成果を上げた新人の要素を細分化して理解を深めました。 連携の秘訣を探る? 最初に関係各所と連携して分析プロジェクトを立ち上げました。プロジェクトに興味や共感を持った人々から順に説明の時間を頂いてミーティングを行い、データ分析によってどのような示唆が得られるかについて話し合いました。その過程でスモールウィンを設定し、うまくいった内容を共有してより多くの人々を巻き込んで進展を図りました。

戦略思考入門

顧客視点で切り拓く実践の真髄

顧客視点は何が大事? 施策自体は数多く存在し、斬新なアイディアも含まれる中で、自社の環境に合わせた実効性のある打ち手を実施するためには、正確に差別化を行うことが不可欠だと実感しました。何よりも重要なのは顧客目線であると気づかされ、社内の打ち合わせや申請フローに追われながらも、常に顧客の視点を忘れずに取り組むことが大切だと思います。また、考え方のサポートとなるフレームワークを活用することで、具体的なアプローチがより明確になると感じています。 企画段階で差は出る? 食品という限定されない商品群を取り扱う中では、企画や提案の段階で差別化を意識することが求められます。今後は、顧客が望む売上や利益のタイミング、さらには消費者が求める品揃えや展開時期をしっかり考慮し、競合他社との差異を明確にした上で提案を進める姿勢を徹底したいと考えています。 業界の可能性は? また、自身が属する食品業界については、バリューチェーンやシナリオプランニングの手法を用いて分析を開始し、業界内の自社の位置づけや可能性を具体的に把握しようと考えています。同様の手法を担当先でも活用し、知識と実践の両面で理解を深め、記憶に定着させることを目指します。

データ・アナリティクス入門

標準偏差が拓く学びの新視点

データの全体像はどう捉える? 標準偏差を活用することで、データのばらつきを正確に把握でき、分析の全体像を掴むきっかけとなりました。平均値だけで物事を判断しないためにも、中央値など他の指標を併せて見ることの大切さを実感しています。 グラフで視覚的に理解できる? また、ヒストグラムは各グループの構成比を視覚的に捉えるのに非常に役立ちます。特に、世代などX軸の単位が明確なものの場合、グラフ化することで理解しやすくなると感じました。売上実績の分析など、データのばらつきを確認することで、より正確な施策の検討が可能になると考えています。 苦手意識は克服できる? 個人的には、以前は標準偏差に対して苦手意識がありましたが、全体のばらつきをとらえる重要な指標として積極的に活用する決意を新たにしました。さらに、ヒストグラムのように一目で内容を把握できるグラフ作成を通じて、プレゼンテーション時の相手の理解促進や、意思決定のスピード向上に貢献したいと思います。 分析の認識共有はどう進む? 今後の日々の分析においては、標準偏差やその他の代表値を取り入れ、データ全体の認識を共有することで、正確な判断に結びつけていきたいと考えています。

データ・アナリティクス入門

フレームワークを使いこなしデータ分析力を高める方法

フレームワークの活用法をどう高める? コンサルティング業務全般で役立つ3Cや4Pのフレームワークは、日々の業務で活用しています。しかし、反論を排除するデータまで踏み込めていない場面があるのが現状です。現状の問題や課題を批判的に捉える視点を持ち続け、本質的な課題や仮説・回答を考え抜くことを諦めない姿勢が重要です。 データソリューションの資料作りにおけるポイントは? 現在作成中のデータソリューションサービスの営業資料には、データ分析の手法やその需要性を盛り込みます。フレームワークは組み合わせて使うことで本質に近づくことができるため、シャープな推論ができる頭の使い方が求められます。そのため、フレームワークを複数組み合わせて使う力を向上させることが重要です。 フレームワークの判断力をどう養う? 具体的には、以下を実行します。まずは分析でよく使うフレームワークを単体で使いこなせるようにします。その上で、単体で使いこなせるフレームワークの数を増やします。そして、組み合わせることによって効果を増幅させるパターンを覚えます。常にどのフレームワークを組み合わせるのが最適かを考え、最適なパターンを選べるよう、判断力を養っていきます。
AIコーチング導線バナー

「分析 × 視点」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right