クリティカルシンキング入門

データ分析の「視点革命」で成果を創る

データ加工で解像度は上がる? データを加工・分解することで、その解像度を向上させることができると再認識した演習でした。データに対して複数の切り口を持つことや、1行追加や率を出すといったひと手間も重要であることを実感しました。動画学習では「分解して何も見えなくても失敗ではない」という考え方を学びました。業務の中で、切り口が間違っていると感じることも多々ありましたが、新しい切り口の必要性に気づくこと自体が価値のあることであると理解できました。 本当に慣れているの? 私は経営企画を担当しており、数値分析には慣れているつもりでした。しかしながら、切り口や観点の不足、そして思考の偏りがあると感じることが少なくありませんでした。「慣れている」ということが、思考の停止を生んでいた可能性もあると気づかされました。 業務にどう反映する? 今回の演習で学んだデータ分析の基本的な考え方を、業務に活かしていきたいと思います。特に、社内の業績報告において、単に数値を報告するのではなく、その数値から得られる洞察を分析し、資料として提供していきます。幸い、私の立場は経営層や全社員に情報を発信できるものであり、報告の機会も多いため、この学びをすぐに実践に移すことが可能です。 レポートで何が伝わる? データ分析の結果を報告するための資料作成が、ただの作業とならないように、受け取る側の視点を考慮し、より良い情報発信ができるよう努めていきます。

クリティカルシンキング入門

問いの力で未来を切り拓く

問題の本質は何? 上司とのレビューで「本当にこれが問題か?イシューは何か?」と問われることを受け、今回学んだイシューの特定ポイントを実践で活用したいと考えています。これにより、不要な議論を減らし、効率的なディスカッションが可能になります。 問い方は合ってる? まず、イシューを特定する際のポイントは次のとおりです。①問いの形にすること。たとえば、「来期の予算について」ではなく、「来期の予算をどう達成するか」という問いに変える必要があります。②具体的に考えること。曖昧な表現ではなく、明確な内容で示す点が重要です。③一貫性を持って押さえ続けること。議論の軸をぶれさせず、常に今ここで答えるべき問いにフォーカスすることが求められます。 仮説の見方はどう? また、仮説を立てた上で各施策のインパクトをシミュレーションすることも大切です。たとえば、事例としてマクドナルドの取り組みが示すように、数値の仮入れを行うことで施策の効果を具体的に測ることが可能となります。これにより、より効果的な施策を実施できるようになります。 現状分析は進んでる? グループや各事業の課題を洗い出す際には、定量的な数値や定性アンケートを基に分析し、仮説を立てた上で複数の視点から切り口を考えることが求められます。そして、得られた問題に対して「本当にこれは問題なのか?」と自問しながら、今ここで答えるべきイシューを見極める習慣を身につけることが重要です。

データ・アナリティクス入門

数字の隠れたストーリーを探る

全体像はどう把握? データを加工する際には、まずインパクト、ギャップ、トレンド、ばらつき、パターンといった視点から全体像を把握することが重要です。その上で、数字で示すのか、ビジュアル化するのか、数式を用いるのかといった手法を選択します。予め何を知りたいのかという前提を忘れず、単に平均値を取るだけでなく、ばらつきに注目して外れ値に潜むチャンスを見出す視点が必要だと感じました。 競合比較はどう見る? 自社品の売り上げや競合との比較についても、提示された数字をそのまま受け止めるだけではなく、どこにベンチマークを置くのかを意識することが求められます。売上が前年より伸びている場合でも、市場全体が拡大し、競合もその中で成長しているのであれば、そのギャップはどこにあるのかを考える癖を身に付けることが大切です。月ごとのシェアや日々の実績トレンドを、抽象的な視点と具体的なアプローチの両面から分析し、真相に迫ることが目標です。 トレンド集計の課題は? また、毎日売上トレンドを集計し、メンバーと共有しているものの、単なるトレンド情報だけではベンチマークを示すことができません。さらに、競合品のデータもタイムリーに入手できていないため比較が難しい状況でした。ピボットテーブルで集計する前のデータ収集に手間を感じ、与えられたデータベースだけで処理しようとしていた自分の意識を改め、より柔軟な視点でデータ活用に取り組む必要性を強く実感しました。

クリティカルシンキング入門

視点を変えると見えてくる課題解決の鍵

根本原因はどう探る? 問題や課題に直面した際、それらの背景や根本のイシューを特定することが最初に、そして非常に重要であるということを学びました。イシューの特定や設定には、立場や部門の違いから様々なアプローチが考えられ、必ずしもイシューが一つではなく、複数存在することもあるという理解が深まりました。 品質不具合の真実は? 多く発生するのは品質の問題であると考えられます。社内での問題であれば、「なぜこの不具合が発生するのか」という視点でのイシュー特定が一般的ですが、逆の視点、「なぜこの不具合が顧客から受け入れられないのか」という視点でのイシュー設定も可能であるという新しい学びを活かしたいと考えています。具体的には、この不具合が直接取引の顧客でどのような問題となるのか、さらには最終ユーザーではどのような問題となるのかという視点を取り入れれば、品質責任の負担を平準化したり、過剰スペックを是正したりすることに繋がる可能性があると感じました。 会議で何を疑問視? 週次で開催される品質会議では、不具合に関する品質部門からの分析内容やその是正に向けた対策について、自分自身が何か疑問を持つように意識することが重要です。「何が問題か」「どこで発生するのか」「なぜ発生するのか」といった基本的な把握に加え、問題や品質がなぜ顧客に受け入れられないのか、顧客でどのような問題に繋がるのかという視点を持つことから始めていきたいと考えています。

戦略思考入門

学びの視点を広げる環境分析の力

目標達成の秘訣は? 目標を効率的に達成するためには何をすべきなのか、この問いへの答えを導くにはどのような流れで考えていくべきかを、今回の講義で学んだように思います。まず、今起きている事象の本質を見極めることが必要であり、そのためにはKSFを特定することが求められます。 視野拡大のコツは? 広い視点や高い視座で情報を収集し整理することで、全体像を把握することが重要です。これにより、大局を捉え、視野を広げて考えることが可能になります。ただし、自分の観点だけに頼ると見落としや偏りが生じてしまいます。そのため、フレームワークが非常に有用なツールとして役立ちます。フレームワークは単に埋めるだけではなく、各要素の整合性が取れていることが大切です。 環境変化の見極めは? 今回学んだ環境分析は、自分の業務において製品や技術の進化の方向性を見出したり、組織施策の考案に活用できると考えています。特に、自分が見えていない外部環境の変化が業界や製品に大きな影響を与える可能性についての話が印象に残りました。このような状況は、自業務でも起こり得ると考えており、外部環境分析に取り組むことの重要性を感じています。 実践で理解深める? 自業務における製品や技術、組織を対象に、フレームワークを活用して環境分析を進めていきたいと考えています。フレームワークの使用方法を理解するだけではなく、実践を通じて理解を深めることが必要だと感じています。

データ・アナリティクス入門

さまざまな視点で問題解決を探る魅力

分析に必要な切り口とは? 分析を行う際には、さまざまな切り口を持つことが重要です。性別や年代といった属性に加えて、契約内容なども分析に取り入れることで、問題解決の糸口が見つかる可能性が高まります。物事を分析する際には、MECE(Mutually Exclusive and Collectively Exhaustive)の原則に従い、要素が重複したり欠けたりしていないか確認することが必要です。また、ロジックツリーを用いて、物事を分解して考えることで効果的な分析が可能になります。 問題解決に向けた新しい視点は? 分析において、それぞれの属性や切り口に新しい視点を加えることで、問題解決へと繋げることが求められています。バイアスを排除し、客観的な視点で物事を理解するためには、問題や課題を細分化して考えることが有効です。 契約者分析の具体例は? 具体例として、契約者の分析においては、契約時間帯や取引接点、折衝回数、前回の契約からの経過年数などの要素を考慮することが考えられます。また、ロジックツリーを活用し、契約率の改善を図ることができます。これにはリードの質を向上させるためのスコアリングや獲得チャネルの最適化のほか、営業プロセスとして初回アプローチの改善やフォローアップの最適化、営業担当者のスキル向上が含まれます。さらに、価値提案の強化として、パーソナライズされた提案の提供や他社との差別化も重要なポイントとなります。

クリティカルシンキング入門

思考を深める「問いかけ」の力

なぜ問いは必要? この講座を通じて、問を立てることの重要性や、そのための考え方を学びましたが、「なぜ問の形にする必要があるのか?」については深く考えたことがなかったと気づきました。問題を問いの形にすることで、解決に向けた思考を進められるということが大切だと学びました。また、講座での課題を通じて、自分が「経験や勘に頼って主観的に考えがち」であることに気づき、これからは客観的に考える方法を身につける必要があると感じました。 どの問いが響く? 「問から始める、問を押さえておく、問を共有しておく」の三点は、さまざまな場面で役立ちそうです。例えば、新規サービスの開発プロジェクトにおいても、「顧客が求めているものは何か」という問いを立て、それを常に念頭に置きプロジェクトメンバーと共有することは、今すぐにでも実践したいことです。また、リーダーの役割を担う中で、「何を課題(問い)と捉えるべきか?」を見極める訓練を積んでいきたいと思います。 正しい問いは? プロジェクトを進める際や会議、データ分析の際には、必ず「問い」を中心に置くことを忘れずに進めようと考えています。問から逸れていないかを確認し、客観的な視点で議論を進めることが重要です。また、リーダーとしてその問いが本当に解くべきものであるかを見極めたいです。講座を通じて多くのことを学んだので、これから様々な場面で実践を重ねていくことが非常に大切だと感じています。

データ・アナリティクス入門

分解して発見!論理の先へ

講義で何を学んだ? 今週はライブクラスに参加できなかったため、動画で講義を視聴しました。講義では、データ分析を進めるにあたって、解決すべき問題を明確にすることの重要性が説かれていました。また、売上低下の原因を複数の視点から分解し、掘り下げた情報の中から解決につながる要素を見出す手法について学びました。 比較で見る視点は? 具体的には、客層やばらつき、年齢層、客単価といった各要素を前年のデータと比較することで、売上低下の原因を浮かび上がらせる方法が紹介されました。比較の過程では、どのグラフを用いて示すのが適切かは一つに限らず、さまざまな手法が存在する点も興味深かったです。 偏りを防ぐには? また、自分の考えに偏りがかからないよう、誰にでも納得してもらえる解決策を導くためには、内容をしっかり分解しデータ分析することが不可欠であると再認識しました。これまでの経験や業種に頼らない、異なるアプローチや視点で物事を見る意識を持つことの大切さを改めて感じました。 論理的思考は? データ分析の学習を通じて、より論理的な思考と仮説検証の実践が重要であることを学びました。情報整理やパターンの発見、適切な結論の導出には、さまざまなフレームワークや手法の活用が役立つと感じ、これを習慣化することが今後の課題と考えています。また、不得意なエクセルでのグラフ作成についても、試行錯誤を重ねながらスキル向上に努めていきたいと思います。

戦略思考入門

実務×理論で深化する戦略分析

フレームワークを再考する? 3C分析、SWOT分析、バリューチェーン分析という戦略の基本フレームワークについて、改めて学び直しました。もともと基礎知識はありましたが、それぞれの利用方法も含めてクリアな理解を得ることができました。 価値向上のポイントは? 特にバリューチェーン分析では、これまでのビジネス経験から各局面で発揮される強みや価値、そして消費者に十分に伝わっていない部分に着目し、どのように価値を高めるか、あるいはコスト削減を進めるべきかを考える良いきっかけとなりました。 全社戦略の切り口は? 全社のビジネス戦略立案においては、これまでも3C分析やSWOT分析が頻繁に使われてきましたが、バリューチェーン分析はあまり活用されていなかったため、今後はこれを起点として戦略立案を進めることを提案しようと考えています。 バックオフィスの挑戦は? また、自部門の戦略立案では、バックオフィス部門という性質上、これらのフレームワークの利用が少ないものの、今年の夏から始まる来年度の戦略立案においては、3C分析とSWOT分析を活用していく予定です。 議論を深める方法は? このように、3C分析、SWOT分析、バリューチェーン分析の3つのフレームワークは、今後の戦略立案やそれに関する議論において積極的に取り入れていき、実践を通して議論の焦点を明確にし、戦略的な視点でのディスカッションをリードできるよう努めます。

マーケティング入門

わかりやすさで広がる可能性

普及要件は何が重要? イノベーションの普及要件として、比較優位性、適合性、わかりやすさ、試用可能性、可視性が挙げられます。中でも特に重要だと感じたのは「わかりやすさ」です。顧客や使用者が具体的なイメージを持ちやすければ、試してみようという動機につながるためです。 顧客視点はどう大切? また、顧客ニーズに沿った商品を開発・販売していると、競合企業が似た製品を市場に投入してくることがあります。こうした状況で競合他社の分析に偏りすぎると、顧客本来のニーズを見落としてしまう恐れがあります。そのため、常に顧客視点を重視することが求められます。 市場導入はどう検討? 新製品を日本市場に導入する際は、イノベーションの普及要件を基に、顧客がどのようなイメージを持つかを十分に検討する必要があります。また、競合製品についても、売れているかどうかを判断するだけでなく、顧客がどのような印象を抱いているかを分析し、その結果を自社製品の改善に役立てることが大切です。 改善策は何がある? まずは、売れていない商品を対象に、なぜ売れていないのかを普及要件に照らして考え、どう改善すれば魅力的になるかをディスカッションすることが有効です。さらに、自社製品については、顧客面談や営業担当との同行などを通じて、私たちが伝えたいメッセージが正しく伝わっているかを確認し、より良いサービス提供につなげる努力が必要だと感じています。

データ・アナリティクス入門

MECEで見つけた問題解決の新たな視点

問題解決の4ステップとは? 普段、何気なく課題を立てる際にwhat、where、why、howを使ってタスクを起こしていましたが、これが問題解決における4ステップであることを今知りました。そのため、4つを順に行わず、whatとhowばかり考えてタスクに起こしていたことが間違いだったと気づきました。 効果的なMECEの活用法は? MECEを活用してロジカルツリーの作成、ロジカルに課題解決を実践することで、少人数のチームでも短時間で効果を上げるサイクルを構築していきたいと思います。今後はプロセスを踏み、自社サービスの課題解決に向けて努力していきたいです。 どのようにMECEを実践する? MECEの概念についてはなんとなく知っていたものの、それを実践できていなかったと感じています。早速活用したいと思います。特にSEOコラムのオーガニックを増加させるために、MECEで分類してから細かく分析したことがないので、試してみたいと感じました。他の分類においても、影響力が少なくてもどこまで細かく分類すべきかを考えるのは難しいと感じます。 タスクの明確化はどう進める? まずは、自身のマーケティング、メディア制作、CS効率化などのタスクを明確化し、最終ゴールである新規会員登録の増加(且つ正しいキーワードと属性のユーザー獲得)を最短でどこからできるのかを検討します。その後にスケジュールを立ててチームに共有したいと思います。

データ・アナリティクス入門

数値が導く学びの冒険

数字はどう見える? まず、数字の見方について考えると、仮説を立てた上でデータを収集し、その後の分析で仮説の検証を行うという流れが基本だと感じました。AIを使って情報を収集する場合でも、自分なりの考えを持ち、AIから得られた情報と自分の意見を照らし合わせることが大切です。もしも自分の予想と結果が異なった場合、その違いがどこから生じたのかを考えることで、新たな学びのヒントが得られると実感しています。 代表値はどう見る? 次に、データの見方としては、代表値に注目しました。単純平均、加重平均、幾何平均、中央値など、データの性質や目的に応じて使い分けることが必要です。また、散らばりを示す指標としては標準偏差があり、これらの数値をグラフ化することで、直感的に状況を把握できる点も魅力的だと思いました。 業務の数値活用は? 普段の業務では、商品の売上や原価、コストダウンの検討などで、いろいろな平均値を算出することが新たな発見につながるのではないかと感じています。そして、その結果を他者に説明する際に、グラフを活用することで、理解を深め、合意形成をスムーズに進めることができると確信しています。 AIで何を発見? 日常の業務の中で、実際に数値をAIに入力して計算やグラフ化を試みることで、これまで気づかなかった事実や見逃していた視点を発見できるのではないかという期待があります。来週には、何かの案件で試してみるつもりです。

「分析 × 視点」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right