クリティカルシンキング入門

目に仕事させる分析術

グラフで何が見える? 数字や表をそのまま眺めるのではなく、グラフ化することで「目に仕事をさせる」という考え方が印象的でした。数字を様々な角度から検証し、視覚的に捉えることで、普段は気づきにくい点が浮かび上がると感じました。また、MECEという概念についても、モレなくダブりなく分析するための具体的な手法(層別分解、変数分解、事象のプロセスでの分解)があることを学び、今後の分析において意識して活用していきたいと思いました。 現状把握のコツは? 私は全社の事務部門において、業務プロセス上の課題を明確にし、改善策を提言・実行する役割を担っています。各種データから課題や問題点を抽出する際、今回学んだ分析手法を取り入れることで、より正確な状況把握ができると期待しています。また、メンバーからの意見をそのまま受け入れるのではなく、他の視点も取り入れながらクリティカル・シンキングを活かして問題点を見極める重要性を再認識しました。 多角的な視点は? 日々の報告や相談を受ける際は、数字については多角的な分析ができているか、課題の洗い出しについてはMECEの観点で漏れがないかをひとつひとつ意識しています。必要に応じて分析の切り口を増やし、グラフ化するなど、手を動かしながら客観的に情報を整理しています。説明を行う際にも、これらの視点が十分に盛り込まれているかを確認し、分かりやすい内容を提供できるよう努めています。

データ・アナリティクス入門

データに飛びつかず、考える力

比較の基本って何? 分析とは比較であるという基本原則を再確認しました。講座では、次の3つの軸に沿って考える重要性が強調されました。まず、プロセスとして仮説思考を実践し、次に5つの視点から多角的に状況を捉えること。そして、アプローチとしてグラフを活用する際には、「どの仮説を立てるか」「何と比較するか」「どのグラフが適切か」という点を検討する必要があると学びました。 立ち止まって考える? この学びを自分の業務に活かすため、まずはデータに飛びつく前に一度立ち止まり、ペン(あるいはキーボードに頼らない)を置いて、分析の目的と複数の仮説を明確にすることの大切さを実感しました。営業活動では、数字が絶えずやってきます。得意先や自社の各部門から提示される数値に対し、ただグラフを作成するのではなく、「データ分析を通じてどんな成果を得たいのか」しっかりとした作戦を練ることが、主導権を握るために必要だと感じました。 見える化の効果は? さらに、「顧客フォーキャスト」と「自社生産計画」を見える化し、グラフ化および定期的な更新を仕組み化する提案も印象的でした。この仕組みにより、営業部門と製造部門が共にデータを活用し、サプライチェーンマネジメントの強化が期待できると考えています。 今後の戦略はどう? 今回の講座で得た知識を、今後の業務に活かし、より効果的な分析と戦略立案に取り組んでいきたいと思います。

クリティカルシンキング入門

問いから始まる新たな発見への旅

問いの必要性は? 問いを立てることの重要性を再認識しました。私の仕事を振り返ると、言語化して問いを立てることが不足していることに気付きました。問いの立て方によって考える方向性が大きく変わるのです。具体的に何が問題で解決すべきなのかを短期的な視点で捉えることが、効果的な問いやイシューにつながると感じました。ただし、長期的な視点での問いも重要ではありますが、それが本質論になると、足元の問題やミッションとずれてしまうこともあると実感しています。 報告方法はどう工夫する? 顧客に調査結果を報告する際、単なるデータの羅列では不十分であることを学びました。事実だけ述べると、自分が何を伝えたいのかが曖昧になり、お客様にとっても「だから何なのか」という疑問を生んでしまう可能性があります。お客様の業績や現状を考慮に入れて、調査結果から得られる価値ある情報を明確にし、具体的な問いを立てて伝える必要があります。 企業報告のポイントは? 企業ごとの報告内容を作成する際は、前回調査からの変化や企業の関心の高い論点を中心に状況をまとめます。これらの背景要因を分析し、状況を正確に把握した上で、具体的な問いを立てることが重要です。問いに対する回答を作成するためには、必要なデータベースを参照することも大切です。最終的には、プレゼンテーションに向けてストーリーを展開し、効果的に伝わるように文章を工夫しています。

データ・アナリティクス入門

平均値だけじゃない!全体を読む力

全体像はどう理解? データ分析において、従来は個々の指標の数値に注目していましたが、全体像を俯瞰する視点の重要性に気付かされました。ミクロな比較だけでなく、マクロな観点からデータ全体の分布に目を向けることで、より精度の高い理解が得られると感じています。 分布の意義はどう? 単に平均値だけに頼るのではなく、各指標のばらつきや分布の状況を把握することが、好調な要因や低調な要因を見極める上で大いに役立ちます。利用者の属性ごとにどのような傾向があるのかを明確に掴むためには、データ全体を広い視野で捉える必要があると実感しました。 層ごとの違いは何? たとえば、ある教育機関の利用者分析では、一部の層でばらつきが大きく見られる一方、他の層では比較的安定した数値が示されていました。こうした違いは、全体のデータを俯瞰することで初めて正しく理解できると考えます。 ツール選びはどうする? 私自身は、常に分布と俯瞰的な視点を忘れないよう、日々の学習の中で意識しています。平均値だけでなく、各種指標の分布を把握するためのツール構築にも取り組み、より具体的かつ実践的な分析に努めています。 仲間とどう共有する? また、周囲の仲間にも、平均値一辺倒にならず、データ全体の傾向を把握する大切さを伝えるよう心がけています。この学びを通じ、より深い洞察と分析力の向上を目指していきたいと考えています。

クリティカルシンキング入門

分析力で未来を切り拓く!

数字分析の基本とは? 数字を使った分析を行う際には、目的をしっかり意識し、そのうえで要素を適切に分解することが重要です。要素の分け方を工夫しないと、誤った結論に至る可能性があります。こうした分析においては、複数の角度から考えることが求められ、MECEの手法が有用です。 切り分けの効果的手法 「モレなくダブりなく」を意識して、ある要素を切り分けることが重要です。まずは全体を定義し、その後に目的に合った切り口で分解することで、問題点を明確にできます。分解の手法には、「階層分解」(~である/~でないに区分け)、「変数分解」(例えば、売上を単価×数量で分ける)、「プロセス分解」(どのフェーズやプロセスに問題があるかを見極める)が含まれます。 事業計画で何を意識すべき? 事業計画を立てる際には、売上の視点と組織育成の視点それぞれに対して、目的に応じた切り口で要素を分解し、それを計画の立案に活用したいと考えています。また、個々のプロジェクトに対しても、売上や要員育成の観点から目標を設定し、その上でメンバーへの指導に役立てたいと感じました。 今後の見直しポイントは? 来季の事業計画については、組織体制を含めて再度見直しを行う予定です。予算と育成の観点から今後必要と思われる要素をMECEなどを活用して洗い出し、実現可能性が高く成長が見込める提案を立案できるように努めたいと思います。

データ・アナリティクス入門

ギャップに挑む学びの一歩

問題の本質をどう捉える? 問題解決プロセスについて学んだ内容は、まず「ありたい姿」と現状を比較し、そこに存在するギャップに着目する点から始まります。その上で、問題を構成する要素に分解し、ロジックツリーを用いながら要素間の関係を整理していく方法を学びました。ここでは、MECEの原則を意識しながら、WHAT、WHERE、WHY、HOWといった各視点で問題を詳細に捉えていくプロセスが重要です。特に、どこに問題が潜んでいるか(WHERE)の特定が解決への大きな手がかりとなります。 広告関連の要因は? たとえば、広告効果を測るデータで前回のCPと比較し、数値に大きな乖離が見られる場合、このプロセスは有効に働きます。その際には、広告以外の宣伝活動があったか、テレビで取り上げられたか、他社が類似のCMを始めたか、または在庫の問題がなかったかなど、さまざまな要因を洗い出して、どうすれば問題が解決できるかを検討することが求められます。 部門へ依頼する理由は? 現状では、業務スコープの中でデータが正しく取り込まれ、出力される段階で分析が終了してしまっていることが多く、結果としてその分析作業は別の部門に依頼しているケースが見受けられます。今後は、アナリストとしての視点を強化し、データを直接営業チームに提供できるよう、問題解決プロセス全体に対する理解と取り組みをさらに深めていきたいと感じました。

データ・アナリティクス入門

データが映す学びの真実

比較検証で何が分かる? データ分析の魅力は、データを漏れなく比較することで仮説を立て、現状を正確に把握できる点にあります。理想の状態が明確になると、実行可能な改善策が見えてくるため、比較検証はとても有効です。また、ヒストグラムや散布図を用いることで、データのばらつきを視覚的に把握でき、適切な分解や分類により分析の精度が向上します。これにより、異なる視点から問題点や改善案を検討できる点が非常に魅力的だと感じました。 実務でどう活かす? 学んだフレームワークを実務で活用するため、過去のデータ分析を再実施し、問題点と改善策を明確にすることを試みました。現状把握には5W1Hを用いた定量的な分析を行い、現場でのヒアリングと合わせることで、実際のデータとのズレを確認しながら解決策を検討しています。これまでグラフを活用してきましたが、ヒストグラムや散布図の導入は初めての試みで、今後さらに活用していきたいと考えています。 効果的な選定法は? 効果的なデータ分析には、収集時に重要な項目を明確にし、適切なデータを選定することが欠かせません。定期的な可視化によりデータの傾向を把握し、その結果を共有することで継続的な改善が図れます。また、What、Where、Why、Howといったステップを守ることで、思考の幅が広がり、仮説とデータに基づく検証を通してより実践的な分析が可能になると実感しました。

クリティカルシンキング入門

未来を創るオンライン学習体験

自分の考えに疑問は? 情報を慎重に読み取り、形式や流れにとらわれることなく、最初に出した自分の回答に疑いをかけることが重要です。特に、どこに重点を置くべきかによってアプローチ方法が異なることがあります。一つの点にだけ集中してしまうと見落としが発生するため、広い視野を持ち、多様な視点からゼロベースで考えることが求められます。 どこを改善すべき? 新しいコンテンツの開発や新オペレーションの考案に際して、前回のコンテンツ実施時のアンケートを分析し、次回への改善点を見つけます。この際、見えたものをそのまま受け取るのではなく、多様な視点から分析を行い、売上を伸ばすためにどこに注目すべきかを考えます。お客様の声や運営スタイル、人件費など、幅広い視点からの観察と熟考がアプローチ方法に影響を及ぼします。 どんなデータに注目? これまで、グラフ上で下回っている部分に注目して改善を試みてきましたが、さらなる成長の可能性にも目を向けていきたいと考えています。異なる特性を持つデータを比較することで、新たな発見が生まれる可能性があるため、目の前のデータだけでなく、それに関連するデータにも焦点を当て、イシューを特定することが求められます。また、様々な視点からの意見が新たな気づきをもたらすため、自分一人で考えるのではなく、ミーティングやデイリーの引継ぎ時間を活用して意見を共有し合うようにしたいです。

クリティカルシンキング入門

思考の枠を超える方法を学ぶ旅

制約された思考からの脱却は? 人は誰しも無意識に制約された思考に陥りやすく、自分が考えやすいように考えてしまう傾向があると理解しました。制約や偏りを避けるためには、頭の使い方を知っておく必要があると感じましたが、具体的な方法についてはまだ説明ができません。今後の学びで納得できる形にしたいと思います。 今回、ライブ授業を受講できず動画での受講となりましたが、皆さんの意見を聞く中で、自分の思考がかなり凝り固まっていることに気づきました。少しずつでも柔軟にしていきたいと思います。 顧客視点を意識するためには? よく耳にする「顧客視点」「顧客ニーズ」「顧客への差別化」など、顧客に対する付加価値を考える際には、偏った思考にならないように3つの視点を意識し、社内での提案作成に役立てたいです。また、ディスカッションやアウトプットを行い、フィードバックをもらうことで客観的な思考を定着させるようにしていきたいです。 多角的視点で目的を分析するには? さらに、目的を明確にするために「なぜなぜ分析(ロジックツリー)」を行い、一つの分解で終わらせるのではなく、多角的視点で分析していきます。目的が明確になったら、次には主張したいことをまとめ、その根拠となる情報を紐づけて説得力のある提案を作成したいです。提案内容を説明する際も、相手に理解してもらえることを意識することが重要だと感じました。

クリティカルシンキング入門

分解力で未来を切り拓く学び

分解の基本はどうする? 分解の仕方によって、物事の見え方や捉え方が変わることを理解しました。分解は最初から細かく行うのではなく、まず全体を定義し、広い視点で傾向を捉えることが重要です。その際、分解の切り口として「いつ、誰が、どのように」を意識すると探しやすくなります。また、分解にはMECE(漏れなくダブりなく)を意識することが求められ、層別、変数、プロセスの分解が考えられます。一度分解して終わらず、他の視点も探し続ける姿勢が大切です。 どんな視点で分解する? システム開発提案などで改善系の提案を行う場合には、操作時間や処理時間、問い合わせの状況、不具合の発生状況など、さまざまな視点で分解することが重要です。これにより、より費用対効果の高い提案が可能になります。これまでもデータ分析を行ってきましたが、自分の想定に偏ったデータ分解をしていたことに気づかされました。他の視点があるのか、偏りがないかを常に自問自答しながら、問題の本質を捉えたいと考えています。 来期提案で注目すべき点は? 来期の体制提案では、現行システムの課題を洗い出すことを目指しています。そのために、現行機能の操作性、問い合わせ、要望一覧をまとめ、来期で取り組むべき改修内容の有効性を示し、それに沿った体制を提案したいと考えています。MECEを意識したデータ分析を活用し、説得力のある提案を行えるように努めます。

データ・アナリティクス入門

AIとフレームワークで広がる問題解決の可能性

AIをどのように活用する? まず、難解な問題解決に向けて、AIを積極的に活用することの重要性を学びました。問題の解決策を探る際、AIの力を借りて多様なアプローチを試みることで、解決の糸口を見つけることができました。 フレームワークの活用法は? 次に、広がった可能性の中から決断を下すのは自分自身ですが、その際にフレームワークを活用することです。より的確な判断を下すために、フレームワークとAIを組み合わせて問題解決を進める方法を学びました。 曖昧な質問でどう思考を広げる? 最後に、従業員に疑問や課題を投げかける際、あえて曖昧な質問を意識的に行うことで思考の幅を広げることです。視点を広げるために曖昧さを残した質問を活用し、従業員の自主的な思考を促進することが効果的であると感じました。 加えて、諦めずに問題と向き合い続ける姿勢を持つことの大切さも再認識しました。特に経営データの分析においては、簡単な答えが見つかる問題は存在しないと思われます。その中で、仮説を繰り返し立てて検証し続けることでしか、問題解決には到達できないと考えました。 持続するために必要なメンタリティは? 諦めない姿勢を持ち続けるために、AIも活用しつつ、自分自身のメンタリティを鍛えることが重要です。問題と向き合い続け、逃げず、他責にせず、必ず解決できると信じて立ち向かう意識を持ち続けたいと思います。

クリティカルシンキング入門

問題解決の視点を変える新しいアプローチ

問題分析の新たな視点は? 問題を分析する際、私は分解して考えることが重要であると認識していました。しかし、まず全体をしっかり定義した上で、MECE(漏れなくダブりなく)を意識した分解方法を考慮することの重要性を理解しました。さらに、その切り口が適切であるかどうかを見直し、別の視点からアプローチすることの必要性も理解しました。 プロジェクトの収益化戦略とは? 担当部門の売上や利益を拡大する際には、プロジェクト別に社員一人当たりの売上や利益、平均単価を算出し、それぞれのプロジェクトを比較することで問題のあるプロジェクトを特定します。その上で、効率的な単価の引き上げや、社員とビジネスパートナーの入れ替え、もしくはプロジェクト継続を諦めてより収益性の高いプロジェクトにリソースを振り分けるという対策を導き出すことが可能になります。 部門の売上拡大にどう貢献する? 社員一人当たりの売上を向上させるために、社員とビジネスパートナーの入れ替えや単価アップの交渉の推進が有効です。ただし、業務知識を有する社員の配置換えは現場への負担も大きいため、十分に検討した上で実施することが求められます。また、社員のローテーションを可能にすることで、プロジェクトを離れる社員には新たなプロジェクトを担当させ、その際もビジネスパートナーを活用することで、部門全体の売上拡大につながると考えます。

「分析 × 視点」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right