データ・アナリティクス入門

仮説で拓く学びの冒険

仮説の定義は? 仮説とは、ある論点に対する仮の答え、または分からない事柄に対する暫定的な解答です。これには「結論の仮説」と「問題解決の仮説」の2種類があり、各仮説は過去、現在、未来という時間軸によって内容が変化します。 複数視点の意義は? 仮説を立てる際は、決め打ちせずに複数の視点から検討することが重要です。異なる切り口で仮説を構築し、各仮説に網羅性を持たせるよう意識しましょう。 問題解決の手順は? 問題解決のためには、「What(問題の明確化)」「Where(問題箇所の特定)」「Why(原因の分析)」「How(解決策の立案)」という4つのステップに沿って進めると効果的です。 仮説活用のメリットは? 仮説を正しく活用することで、各自の検証マインドが向上し、説得力が増すと同時に、ビジネスのスピードや行動の精度の向上が期待できます。これまでの経験則や直感に頼るのではなく、ゼロベースで思考し、決め打ちせずに複数の仮説を検討することが求められます。 多角的分析は効果的? まずは、3Cや4P分析を用いて多角的に仮説を立てることから始め、ヒト・モノ・カネといった様々な切り口で網羅性を意識することが大切です。実践の際には、一つの仮説に固執してデータ収集に走るのではなく、複数の視点から検証を重ねることで、比較対象との条件を同等に保ちながら分析を進め、精度の高い答えに導くことが期待されます。

戦略思考入門

学びを深める!フレームワーク活用法

学びの根拠はどう? 今までの学習内容を振り返りながら総合演習を行うことで、学びが一層深まりました。何か施策を行う際には、「現状が○○であるからこの施策を行うべき」「自社の資源に○○があるので他事業にも転用できる」といった根拠が必要です。この根拠は、現状の深い分析を通じて得られるものであると、改めて実感しています。 現状考察はどうなってる? 目先のゴールにのみ焦点を当てがちですが、現状の考察を怠らないよう心がけたいと思います。また、ビジネスフレームワークを活用することで、現状の情報を効率的に整理できることを体感しました。今後は、活用できる場面を増やし、効果的な情報整理を実現したいです。 部署の未来はどう? 自部署においても、先の目標やロードマップを描くと同時に、現状分析を網羅的に行うことの重要性を感じています。今後、新規事業を展開する予定があるため、現状を大局的な視点から整理し、価値や独自性の把握、範囲の経済を活かせるかどうかの考察が必要となります。 分析の手法は何? 現状分析においては、フレームワークを活用していこうと考えています。例えば、VRIO分析を使って自部署の価値や独自性を把握し、SWOT分析で内部・外部環境要因を整理する、そしてPEST分析でマクロ視点から情報を整理します。フレームワークにはまだ慣れていないため、まずは手を動かして情報を分析・整理する力をつけていきたいと思います。

戦略思考入門

差別化とコスト削減の成功戦略

顧客価値をどう考えるべきか? 良い差別化のポイントには、顧客にとって価値があるかどうか、顧客視点の競合を意識したものであるか、実現可能性や持続可能性について検討したものであるかの三つがあります。さらに、VRIO分析を行うことで、経済価値、希少性、模倣困難性、組織に関する問いに答え、資源の有効性を評価できます。また、ポーターの三つの基本戦略に基づき、企業の戦略を「コストリーダーシップ」「差別化戦略」「集中戦略」に分けることができます。これにより、戦略の起案や競合の戦略把握に役立ちます。 自社の戦略をどう強化する? 自社はポーターの三つの戦略のうち、コストリーダーシップに位置しています。コストの削減に努めており、自前主義が功を奏し、生産から販売、配送に至るまでワンストップで提供しています。さらに、社内のシステムも自前で作っており、アウトソーシングによるコストを削減しています。特に配送の自前は他社には模倣しづらい領域であり、当社の特長と言えます。今後は差別化戦略をさらに取り入れることで、強みが増すのではないかと考えています。 同業他社との差異をどう見つける? 同業他社のビジネスについてもVRIO分析を実施していきたいと思います。これにより、自社の強みを改めて理解し、弱みを見つけ出せることで、新たなビジネスや戦略の糸口が見つかるのではないかと感じました。時間は限られていますが、実践してみたいと思います。

クリティカルシンキング入門

データ分析で得る新たな視点と知見

分解の効果は何? データを分解することで、より多くの知見を得られることを実感しました。特に、ある特徴が一つの切り口で現れた際に、それだけで答えを決めつけると他の観点から見ると誤りであることがあることに新鮮さを覚えました。答えが見つかったように見えても、それはあくまで仮説であり、しっかりと検証することが重要だと感じました。 現状をどう把握する? ITシステム品質保証チームの今後の戦略を立てるにあたり、まず現状を把握したいと思います。そのために、システムの品質評価を分解し、現状に対する課題を見つけ、知見を得たいと考えています。具体的には、ユーザーが5段階で評価したデータの平均値であるNPS平均を分解していきます。 どの切り口が有効? まず、MECEを意識しながら様々な切り口を考えます。層別分解としては、ユーザーの属性別や単価別を検討します。変数分解としては、評価の平均は合計値を評価数で割ることで得られるため、5段階各評価ごとの合計をグラフ化します。また、評価数の分布や1ユーザーあたりの評価回数の層を作り、さらに分解して考察します。プロセス分解としては、ユーザーが新規登録してからサービスを利用し終えるまでの流れをプロセスに分けて、各段階での評価がどの程度であるかを分析していきます。 検証の重要性は? 以上のように、さまざまな観点から分解することで知見を得ることを目指します。

クリティカルシンキング入門

問いから始まる新たな発見への旅

問いの必要性は? 問いを立てることの重要性を再認識しました。私の仕事を振り返ると、言語化して問いを立てることが不足していることに気付きました。問いの立て方によって考える方向性が大きく変わるのです。具体的に何が問題で解決すべきなのかを短期的な視点で捉えることが、効果的な問いやイシューにつながると感じました。ただし、長期的な視点での問いも重要ではありますが、それが本質論になると、足元の問題やミッションとずれてしまうこともあると実感しています。 報告方法はどう工夫する? 顧客に調査結果を報告する際、単なるデータの羅列では不十分であることを学びました。事実だけ述べると、自分が何を伝えたいのかが曖昧になり、お客様にとっても「だから何なのか」という疑問を生んでしまう可能性があります。お客様の業績や現状を考慮に入れて、調査結果から得られる価値ある情報を明確にし、具体的な問いを立てて伝える必要があります。 企業報告のポイントは? 企業ごとの報告内容を作成する際は、前回調査からの変化や企業の関心の高い論点を中心に状況をまとめます。これらの背景要因を分析し、状況を正確に把握した上で、具体的な問いを立てることが重要です。問いに対する回答を作成するためには、必要なデータベースを参照することも大切です。最終的には、プレゼンテーションに向けてストーリーを展開し、効果的に伝わるように文章を工夫しています。

データ・アナリティクス入門

データに飛びつかず、考える力

比較の基本って何? 分析とは比較であるという基本原則を再確認しました。講座では、次の3つの軸に沿って考える重要性が強調されました。まず、プロセスとして仮説思考を実践し、次に5つの視点から多角的に状況を捉えること。そして、アプローチとしてグラフを活用する際には、「どの仮説を立てるか」「何と比較するか」「どのグラフが適切か」という点を検討する必要があると学びました。 立ち止まって考える? この学びを自分の業務に活かすため、まずはデータに飛びつく前に一度立ち止まり、ペン(あるいはキーボードに頼らない)を置いて、分析の目的と複数の仮説を明確にすることの大切さを実感しました。営業活動では、数字が絶えずやってきます。得意先や自社の各部門から提示される数値に対し、ただグラフを作成するのではなく、「データ分析を通じてどんな成果を得たいのか」しっかりとした作戦を練ることが、主導権を握るために必要だと感じました。 見える化の効果は? さらに、「顧客フォーキャスト」と「自社生産計画」を見える化し、グラフ化および定期的な更新を仕組み化する提案も印象的でした。この仕組みにより、営業部門と製造部門が共にデータを活用し、サプライチェーンマネジメントの強化が期待できると考えています。 今後の戦略はどう? 今回の講座で得た知識を、今後の業務に活かし、より効果的な分析と戦略立案に取り組んでいきたいと思います。

クリティカルシンキング入門

分析力で未来を切り拓く!

数字分析の基本とは? 数字を使った分析を行う際には、目的をしっかり意識し、そのうえで要素を適切に分解することが重要です。要素の分け方を工夫しないと、誤った結論に至る可能性があります。こうした分析においては、複数の角度から考えることが求められ、MECEの手法が有用です。 切り分けの効果的手法 「モレなくダブりなく」を意識して、ある要素を切り分けることが重要です。まずは全体を定義し、その後に目的に合った切り口で分解することで、問題点を明確にできます。分解の手法には、「階層分解」(~である/~でないに区分け)、「変数分解」(例えば、売上を単価×数量で分ける)、「プロセス分解」(どのフェーズやプロセスに問題があるかを見極める)が含まれます。 事業計画で何を意識すべき? 事業計画を立てる際には、売上の視点と組織育成の視点それぞれに対して、目的に応じた切り口で要素を分解し、それを計画の立案に活用したいと考えています。また、個々のプロジェクトに対しても、売上や要員育成の観点から目標を設定し、その上でメンバーへの指導に役立てたいと感じました。 今後の見直しポイントは? 来季の事業計画については、組織体制を含めて再度見直しを行う予定です。予算と育成の観点から今後必要と思われる要素をMECEなどを活用して洗い出し、実現可能性が高く成長が見込める提案を立案できるように努めたいと思います。

データ・アナリティクス入門

ギャップに挑む学びの一歩

問題の本質をどう捉える? 問題解決プロセスについて学んだ内容は、まず「ありたい姿」と現状を比較し、そこに存在するギャップに着目する点から始まります。その上で、問題を構成する要素に分解し、ロジックツリーを用いながら要素間の関係を整理していく方法を学びました。ここでは、MECEの原則を意識しながら、WHAT、WHERE、WHY、HOWといった各視点で問題を詳細に捉えていくプロセスが重要です。特に、どこに問題が潜んでいるか(WHERE)の特定が解決への大きな手がかりとなります。 広告関連の要因は? たとえば、広告効果を測るデータで前回のCPと比較し、数値に大きな乖離が見られる場合、このプロセスは有効に働きます。その際には、広告以外の宣伝活動があったか、テレビで取り上げられたか、他社が類似のCMを始めたか、または在庫の問題がなかったかなど、さまざまな要因を洗い出して、どうすれば問題が解決できるかを検討することが求められます。 部門へ依頼する理由は? 現状では、業務スコープの中でデータが正しく取り込まれ、出力される段階で分析が終了してしまっていることが多く、結果としてその分析作業は別の部門に依頼しているケースが見受けられます。今後は、アナリストとしての視点を強化し、データを直接営業チームに提供できるよう、問題解決プロセス全体に対する理解と取り組みをさらに深めていきたいと感じました。

データ・アナリティクス入門

データが映す学びの真実

比較検証で何が分かる? データ分析の魅力は、データを漏れなく比較することで仮説を立て、現状を正確に把握できる点にあります。理想の状態が明確になると、実行可能な改善策が見えてくるため、比較検証はとても有効です。また、ヒストグラムや散布図を用いることで、データのばらつきを視覚的に把握でき、適切な分解や分類により分析の精度が向上します。これにより、異なる視点から問題点や改善案を検討できる点が非常に魅力的だと感じました。 実務でどう活かす? 学んだフレームワークを実務で活用するため、過去のデータ分析を再実施し、問題点と改善策を明確にすることを試みました。現状把握には5W1Hを用いた定量的な分析を行い、現場でのヒアリングと合わせることで、実際のデータとのズレを確認しながら解決策を検討しています。これまでグラフを活用してきましたが、ヒストグラムや散布図の導入は初めての試みで、今後さらに活用していきたいと考えています。 効果的な選定法は? 効果的なデータ分析には、収集時に重要な項目を明確にし、適切なデータを選定することが欠かせません。定期的な可視化によりデータの傾向を把握し、その結果を共有することで継続的な改善が図れます。また、What、Where、Why、Howといったステップを守ることで、思考の幅が広がり、仮説とデータに基づく検証を通してより実践的な分析が可能になると実感しました。

クリティカルシンキング入門

未来を創るオンライン学習体験

自分の考えに疑問は? 情報を慎重に読み取り、形式や流れにとらわれることなく、最初に出した自分の回答に疑いをかけることが重要です。特に、どこに重点を置くべきかによってアプローチ方法が異なることがあります。一つの点にだけ集中してしまうと見落としが発生するため、広い視野を持ち、多様な視点からゼロベースで考えることが求められます。 どこを改善すべき? 新しいコンテンツの開発や新オペレーションの考案に際して、前回のコンテンツ実施時のアンケートを分析し、次回への改善点を見つけます。この際、見えたものをそのまま受け取るのではなく、多様な視点から分析を行い、売上を伸ばすためにどこに注目すべきかを考えます。お客様の声や運営スタイル、人件費など、幅広い視点からの観察と熟考がアプローチ方法に影響を及ぼします。 どんなデータに注目? これまで、グラフ上で下回っている部分に注目して改善を試みてきましたが、さらなる成長の可能性にも目を向けていきたいと考えています。異なる特性を持つデータを比較することで、新たな発見が生まれる可能性があるため、目の前のデータだけでなく、それに関連するデータにも焦点を当て、イシューを特定することが求められます。また、様々な視点からの意見が新たな気づきをもたらすため、自分一人で考えるのではなく、ミーティングやデイリーの引継ぎ時間を活用して意見を共有し合うようにしたいです。

クリティカルシンキング入門

思考の枠を超える方法を学ぶ旅

制約された思考からの脱却は? 人は誰しも無意識に制約された思考に陥りやすく、自分が考えやすいように考えてしまう傾向があると理解しました。制約や偏りを避けるためには、頭の使い方を知っておく必要があると感じましたが、具体的な方法についてはまだ説明ができません。今後の学びで納得できる形にしたいと思います。 今回、ライブ授業を受講できず動画での受講となりましたが、皆さんの意見を聞く中で、自分の思考がかなり凝り固まっていることに気づきました。少しずつでも柔軟にしていきたいと思います。 顧客視点を意識するためには? よく耳にする「顧客視点」「顧客ニーズ」「顧客への差別化」など、顧客に対する付加価値を考える際には、偏った思考にならないように3つの視点を意識し、社内での提案作成に役立てたいです。また、ディスカッションやアウトプットを行い、フィードバックをもらうことで客観的な思考を定着させるようにしていきたいです。 多角的視点で目的を分析するには? さらに、目的を明確にするために「なぜなぜ分析(ロジックツリー)」を行い、一つの分解で終わらせるのではなく、多角的視点で分析していきます。目的が明確になったら、次には主張したいことをまとめ、その根拠となる情報を紐づけて説得力のある提案を作成したいです。提案内容を説明する際も、相手に理解してもらえることを意識することが重要だと感じました。

クリティカルシンキング入門

分解力で未来を切り拓く学び

分解の基本はどうする? 分解の仕方によって、物事の見え方や捉え方が変わることを理解しました。分解は最初から細かく行うのではなく、まず全体を定義し、広い視点で傾向を捉えることが重要です。その際、分解の切り口として「いつ、誰が、どのように」を意識すると探しやすくなります。また、分解にはMECE(漏れなくダブりなく)を意識することが求められ、層別、変数、プロセスの分解が考えられます。一度分解して終わらず、他の視点も探し続ける姿勢が大切です。 どんな視点で分解する? システム開発提案などで改善系の提案を行う場合には、操作時間や処理時間、問い合わせの状況、不具合の発生状況など、さまざまな視点で分解することが重要です。これにより、より費用対効果の高い提案が可能になります。これまでもデータ分析を行ってきましたが、自分の想定に偏ったデータ分解をしていたことに気づかされました。他の視点があるのか、偏りがないかを常に自問自答しながら、問題の本質を捉えたいと考えています。 来期提案で注目すべき点は? 来期の体制提案では、現行システムの課題を洗い出すことを目指しています。そのために、現行機能の操作性、問い合わせ、要望一覧をまとめ、来期で取り組むべき改修内容の有効性を示し、それに沿った体制を提案したいと考えています。MECEを意識したデータ分析を活用し、説得力のある提案を行えるように努めます。

「分析 × 視点」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right