クリティカルシンキング入門

疑いが拓く学びの扉

本質をどう捉える? 本質的な課題を捉えるためには、まず目的を明確にすることが大切だと感じました。何のために、何を問うのか、その根底にある本質に迫ろうとする中で、当たり前と思い込んでいる事柄に疑いの視線を向けると、より本質に近づけるのではないかと思います。また、その問い方は単純な二者択一に終始せず、柔軟な姿勢を保つことが重要です。問いは一度限りではなく、何度も継続して行うべきで、その際、視点が偏らないよう多角的に分析し、具体的な実践を心がける必要があります。統計的なデータやその分析手法も、このプロセスにおいて有効なツールとなるでしょう。 本当の課題は何? 私はIT業界で働いており、この考え方は特に要件定義工程で役立つと感じています。本当にその機能が必要なのか、ユーザの真の課題は何か、また解決策がユーザ側の視点から見て適切かどうか、といった検証が必要な場面です。さらに、バグや障害対応においても、なぜ問題が発生したのか、どのタイミングで混入したのか、過去の事例と比較することで原因を追求する際に、このアプローチは有用です。開発プロセスの改善やリスク管理の分野でも、「今までのやり方が正しいのか」という疑念を持ち続け、常に振り返りながら改善を図る上で効果的だと考えます。 問いの立て方は? 「本質的な課題を捉える問いの立て方を身につける」ための行動計画としては、まずは疑いながら考える習慣をつけることから始めます。仮説を立て疑うことを日常に取り入れ、必要な理論や手法を書籍や研修を通して体系的に学びます。その後、実際の会議や小さなチームミーティングで本質的な問いを繰り返し投げかけ、意識を高めることを目指します。実践後は振り返りを行い、その結果を次回に活かすというサイクルを繰り返すことで、確実に身につけていけると考えています。

データ・アナリティクス入門

データの見方が変わる!定量分析の魔法

定量分析の視点をどう活用する? 定量分析の5つの視点(1. インパクト、2. ギャップ、3. トレンド、4. ばらつき、5. パターン)を学びました。データを漫然と眺めるのではなく、これらの視点で見ることで効率的に示唆を得られると感じました。特に、平均値を取る際に「標準偏差(データのばらつき度合)」という視点をこれまで考えたことがありませんでした。同じ平均値でも「ばらつきがある」か「ばらつきがない」かでデータの意味合いが変わります。今後は標準偏差も併せてチェックしていきたいと思います。 データ比較時のポイントは? 売上やサービス利用者数などのデータを前年度と比較する際には、定量分析の5つの視点を意識して数字を見るように心がけます。また、特定月における新規受講者や解約者を年代別に分析する際、これまで表に落とし込むことは行っていたものの、グラフ作成は少なかったです。今後はヒストグラムなどのグラフを活用し、ビジュアルで傾向を把握できるようにしたいと思います。これはチームメンバーにも促していきたいです。 チームでの視点共有は? まずは、学んだことを言語化し、チームメンバーと共有することが重要です。データの分析もチームメンバーと一緒に行う際、「Aさんはトレンドがないか」「Bさんはばらつきがないか」といった具合に、各メンバーに特定の視点で見る役割を依頼するのも良い考えだと思います。これにより、チーム全体として5つの視点を網羅することができます。 グラフ化で何を検証する? 最後に、各月のサービス利用者の新規受講率や解約率のデータが表として存在していますが、まずは先月のものを目的に応じてグラフ化し、理解の速度や深度にどのような違いがあるのか、グラフから意味ある示唆を導き出しやすくなるのかを検証したいと思います。

マーケティング入門

顧客ニーズを探る新視点の発見

顧客ニーズって何だろう? 「何を売るか」を考える際に、まず「顧客のニーズ」を念頭に置くことの重要性を学びました。顧客の「欲求」やそれを解決する手段、さらには顧客が自覚していないニーズについても思案し、提案できるよう努めることが大切です。また、自分が顧客の立場になったつもりで考えることも顧客理解に役立つ方法の一つだと学びました。 具体例はどう活かす? 学びを具体例で深めることができ、特にある事例が大変わかりやすかったです。具体的な例があることで、自社ではどう当てはめるかを想像でき、考えがさらに深まったと感じます。 ペインポイントの意味は? 中でも印象に残ったのは「ペインポイント」という言葉でした。これは「痛みや不快に感じていること」を指し、お金を出してでも解消したいと顧客が感じるポイントです。実はこの視点を私は見逃していたように思いました。 商品見直しの狙いは? 現在、自社製品の商品ラインナップの見直しを行っています。会議では以下の点について分析し、新しい提案をしようと計画していますが、課題もあります。 顧客ニーズの調査は? ①顧客ニーズの分析 ターゲット層が求めているものは何かを考えます。特にペインポイントを解消するという視点で、年代別の特徴を調査したいと考えています。しかし、アンケートを行う時間がないため、正確な情報を得るにはどこからデータを集めるかが課題です。 自社の強みを考える? ②自社の強み どのような点が自社の強みなのか、ブランドイメージを損なわず、原点に立ち返る商品を検討します。 社内データで検証する? 成功事例をもとに、社内データでカスタマージャーニーを調べ、情報を集約して部署内で共有したいと思います。そこから、顧客ニーズをさらに深掘りする相談をしてみます。

戦略思考入門

差別化に挑む私の学びの旅

ターゲットは明確? 差別化のためには、まずターゲットを明確にし、顧客や市場、競合、自社をしっかりと分析して、強みと弱みを整理することが重要です。強みや弱み、機会、脅威を浮き彫りにしつつ、実現可能性と継続可能性も考慮して施策を検討します。 独自のアイデアは? アイデアを考える際には、ありきたりな発想に飛びつかず、深く考えることが求められます。他業界からの発想を取り込むことで新しい視点が得られるかもしれません。また、集合知の活用は、アイデアの質を高める一助となり、自社の強みを意識しつつ、必要に応じて外部の力も借りることが重要です。ライバルにとらわれず、新しい差別化を追求します。 強みの活用はどう? 自社の強みを最大限に活用するには、VRIO分析が有効です。特に課題として感じるのはO(持続可能性)の部分です。経営資源を効果的に活用し、持続可能な組織化を図ることが求められます。この視点を自分の働き方に取り入れて、業務に反映したいと思います。 現状の整理はどう? 業務においては、現状を的確に把握して分析し、施策の実現可能性、継続可能性、模倣容易性、顧客ターゲットを明確に整理することが重要です。他のプロジェクトとの差別化を図るため、課題を整理し、重複しない施策を立案します。 業務効率はどうですか? また、バックオフィス業務の効率性を追求し、無駄を省いて既存の業務を見直します。業務が属人化しないように、統一したルールを設け、過去と未来の業務の違いを考慮しながら進めていきます。 自分の軸はある? 自分自身が社内でどのようなポジションで進むべきかについて、まずは自分の強みを理解し、VRIO分析を行います。自身の不足を補い、模倣のできない分野を伸ばして、自分独自の仕事の軸を持つことが重要です。

データ・アナリティクス入門

仮説検証で未来を切り拓く挑戦

仮説の再考は? 仮説の分類について考える際、私は従来「問題解決を過去から見る」観点に主眼を置いていました。しかし、仮説全体を見直すうちに、「結論や未来を予測し、仮定の上、検証する」点には十分踏み込んでいなかったことに気づきました。 視野を広げるとどうなる? そこで、仮説全体を見る際には、結論や未来の予測を含む多角的な視点を持ち、バイアスにならないよう視野を広げて考えることが重要だと感じました。結論、つまりゴールから出発しデータを集めて検証していくものの、その過程で手戻りが発生し、結果として何度もデータを再確認することがあります。こうした経験から「方向性を見いだせて初めて動き出せる」という体験を増やしてみたいと思いました。時間効率を意識することで、普段の行動に留まりがちになりますが、時にはうまくいかないことを試みる勇気も大切だと考えています。うまくいかないことから得られる手戻りや試行錯誤の過程は、生産効率を低下させる一方で、自己を納得させるための貴重な材料にもなります。 根拠に基づく行動は? 行動計画としては、「仮説を立てる」にあたって、数字に基づく根拠やフェルミ推定を活用し、意思決定において経験則に頼らず新しい立ち位置を見つけることを目指します。また、これまで行ってきたお客様の離脱予測を、仮説をもとに見直し、データ収集を通じて有効な改善策を模索していきたいと考えています。 データの真実は何か? さらに、KPI関連指標については、チーム単体での目標達成がデータ分析を経ないままであったことを反省し、達成の要因を深掘りすることで、本当に正しい事業活動を行えているかを検証します。他チームや類似業務との比較を通じて、データ取得し仮説を立て分析を行うことで、一層の改善を図っていくことを目指しています。

クリティカルシンキング入門

データ分析で得た新たな視点を活かす

テクニックって何? 最初に、テクニック面で以下の点を再確認しました。まず、「何となく考え始める」のではなく、「イシューは何か?」を明確にすることからスタートします。そして、そのイシューが正しいかを客観的に考え、特定したイシューを分析する際には「ひと手間かけて」データを加工することが大切です。さらに、データの分解が正しいかどうか、一度立ち止まって考える姿勢を持ち、相手に伝わるように丁寧にスライドを作成することが重要です。 心はどう向き合う? 次に、気持ちの面でも以下のことが身に染みました。人や書籍から知識を得るだけではなく、自分の頭で考えることをしなければ、自分の力にはなりません。しかし、自分勝手に考えるだけで人や書籍から学ばなければ、独断に陥ってしまいます。これからも「自分自身で考える」ことを止めてはいけないと強く感じています。 タスクの理由は? ルーチンのタスクにおいても、なぜそれを実施しているのか、実施の必要があるのかを改めて考え直しながら業務に取り組むべきだと感じました。そのため、早速月曜日から思考を止めることなく行動していきたいです。また、企画を立案する際には、イシューの特定から相手に伝わる資料の作成・提案までのすべてのフローで今回学んだことが実施できているかを確認しつつ進めていきたいと考えています。 具体的には、ミーティング参加時にはイシューがぶれていないかを常に確認します。そして、思考を整理する際にはMECEやピラミッドストラクチャーなどのフレームワークを活用し、思いつきで行動するのではなく、一度立ち止まる癖をつけるようにしたいです。また、資料作成時には論理的思考をベースに下準備を行い、データを分析し、相手に伝わるかという視点に重きを置く習慣をつけることが必要だと考えています。

データ・アナリティクス入門

チーム力で見つける新しい発見と成長

6週間の振り返りと学び 6週間の総まとめをLive授業で振り返り、演習として実践することができました。時間は限られていましたが、ブレークアウトルームでのディスカッションが非常に有意義でした。他のグループの発表やチャット欄での投稿から、同じ題材でも切り口や発想が異なる点も興味深かったです。 アウトプットの重要性を実感 アウトプットの重要性と他の人を巻き込み、様々な視点で物事を考えることの重要性や効果を実感しました。データ分析は週次のチームミーティングでの前週の結果分析や当該週のアクションプラン策定に活用しています。本講座で学んだ考え方や進め方をチームメンバーにも浸透させるため、常にアウトプットを意識していきます。 分析と仮説構築の大切さ 特に以下の3点を大切にしていきます。 1. 分析とは比較すること 2. 仮説の引き出しの持ち方 3. 仮説構築に各種フレームワークを活用できること 新しいスタイルの効果は? アウトプットを通じて自分自身にも自然に身につけ(体得する)状況にまで持っていければと思います。 Q2に記載した場面での活用を考えていますが、その進め方には特に注意を払いたいです。最初に自分の分析結果を示してからメンバーの意見を聞くのではなく、前週の結果やトレンドを全員で確認し、その上でどのような仮説や原因が考えられるかをチームで検討します。そして、その上で自分の分析結果や仮説を共有することを意識して取り組みたいと思います。 得られる効果への期待 このスタイルにより、以下の効果が期待できます。 1. バイアスをある程度取り除ける 2. 自分自身が思いもつかなかった仮説を認識できる これまでのスタイルから変えていくことで、どのような結果が得られるのか楽しみです。

データ・アナリティクス入門

データで見える真実: 分析の新たな視点へ

重要な三つのポイントとは? 私が特に重要と感じた点について整理すると、次の三つが挙げられます。 まず、「分析は比較なり」という点です。物事を細分化して整理し、各要素の性質や構造をはっきりさせることが求められます。また、具体的な比較対象や基準を設けることで、状態を把握しやすくなり、意思決定もしやすくなります。 データ分析の目的確認はなぜ大事? 次に、「データ分析を始める前に目的の確認をすること」の重要性です。仮説を立てて取り組むことが強調され、目的と照らし合わせながら比較することで、目に見えない情報を想像しながらの分析が可能になります。 最後に、「Apple to Appleになっているか」の確認が重要です。不適切な比較対象を避け、意思決定に役立つ分析を行うよう心がけなければなりません。 グラフの可視化はどう変わる? また、グラフの可視化においても学びがありました。データの種類に応じた加工法やグラフの見せ方を学び、「どんなデータを」「どう加工するとわかりやすいか」をより意識する必要があります。これを企画ごとのデータ分析に役立て、反響率や成約率、属性やエリアなど、比較すべき視点が今まで以上にあることに気づかされました。 実践にどう活かすか? さらに、作成するグラフの可視化方法についても実践していきたいと感じました。分析の本質をチーム内で共有し、分析に取り組む前の目的の明確化を意識することが必要です。そのうえで、これまで出してきた分析指標が正しい比較だったのか、新しい視点はないかを見直し、より良い意思決定に役立つものにしていきたいと思います。 企画運営の課題を定量分析によって発見し、根拠のある提案ができるようにするために、まずは学びを実践していくことが大切だと感じました。

マーケティング入門

ターゲットの先に魅せる未来

ターゲットを見極めるには? ターゲット設定のプロセスは、誰に何を売るのかを明確にする上で非常に重要だと実感しました。市場調査を通じて、ターゲット顧客のニーズをより深く理解し、そのニーズに響く価値提案や戦略を具体的に定めることが、効果的な営業戦略につながると感じました。 自社の強みをどう伝える? また、自社製品の魅力を正確に伝えることや、自分自身の強みを相手に伝える技術の向上が、営業活動において成約に大きく影響すると理解しました。日々のコミュニケーションスキルの改善が、信頼関係の構築において不可欠であると再認識しています。 新製品の差別化は? 新製品の企画段階では、これまで想定していなかった観点から差別化ポイントを抽出する方法が今後も役立つと感じました。市場調査の知識を活かし、ターゲット顧客のニーズや最新のトレンドを正確に把握することで、競合他社との差別化を明確にし、商品コンセプトをより強固なものにするアプローチを学びました。同時に、適切な価値提案と効果的なプロモーション戦略の構築が重要であると理解できました。 売上向上の秘訣は? さらに、既存製品の改良や販売促進活動においては、顧客からのフィードバックをしっかり分析し、マーケティングミックス(製品、価格、場所、プロモーション)の最適化を図ることが、売上向上につながる施策の立案に役立つと感じています。 仮説はどう検証する? 加えて、自社製品の特性やターゲットについて、従来とは異なる視点で検討するディスカッションを行う中で、仮説に基づく施策立案の可能性を見出しました。仮説を立てた上で、スモールスタートで実施し、その効果や結果についてなぜうまくいったのか、または課題があったのかをしっかり検証していく重要性を改めて実感しました。

戦略思考入門

しつこく考え抜く戦略の極意

戦略活用の難しさは? 戦略に関する知識を得ることは簡単ですが、それを実際に活用する際には多くの困難が伴います。ただ単に表面的な発想に頼らず、しつこく考え抜くことが重要です。また、なぜ大企業がその案をこれまで実施しなかったのかを理解することも、戦略策定には欠かせません。自分が最初に思い付くものは稀で、多くの場合、大手や競合も同じアイデアに至ったものの何らかの理由で実現していない可能性があります。自社でできる理由を見つけ、それを基に差別化を図ることが重要だと感じました。 提案の根拠は何だろう? 施策を提案する際は、自社がそれを実施できる根拠をしっかりとつなげる必要があります。現代においては、リソースが限られ、従来のように市場の先を行くリーダー戦略を活用するのは難しいです。初期投資や損益分岐点をしっかりと試算し、どのタイミングでどうであれば成功か失敗かの基準を定めることが大事です。これらの基準を前もって設定しておけば、冷静な判断軸を持てます。そのため、これを意識していくことが必要だと考えます。 徹底調査の意義は? また、妥協せず徹底的に調査する姿勢を持つことも重要です。今後、業務において提案する機会がありますが、その際には自分のアイデアに対して常に批判的な視点を持つよう意識するべきです。「なぜ」を繰り返し問い、批判的に思考することで、より正しい提案を進めていくことができます。 成功基準の決め方は? このプロセスには、以下のステップが重要です。 1. 仮説が論理的に固まるまでしっかりと調査・分析を続ける。 2. 批判的思考を用いて、反対意見に対する答えを十分に検討する。 3. 競合や大手企業に対する対策や、それができない理由を考える。 4. 実施前に成功と失敗の指標を設定する.

クリティカルシンキング入門

批判的思考で深める分析術

本当に合っているか? 大前提として、「その答えは本当に正しいのか?」と自分自身に問いかけ、批判的に考えることが重要です。以下の手法を活用していきたいと思います。 整理のポイントは? まず、データを視覚的に整理し、合計や割合、昇順下降順で加工することで視覚的に情報を得られるようにします。全体を定義したうえで、漏れがなく重複しないように(MECEの原則に基づいて)分解を行います。この際、「いつ」「誰が」「どのように」という切り口から考えることがポイントです。 どの角度で考える? さらに、分析を効率的に進めるために型やフレームを身につけることが大切ですが、まずは手を動かし、そこから見えてくるものに対し「この角度はどうだろう?」や「この視点に漏れはないだろうか?」と批判的に思考を繋げていきたいと思います。 分析の仮説は? 営業戦略やプロジェクトの方針を検討する際には、営業データを多角的に収集することを心がけます。しかし、現状の分析が広がりすぎてしまう傾向があるため、大まかな見立てを立て、仮説を持って分析を行えるようにしていきたいです。 伝え方の工夫は? また、分析結果や方針を伝える際には、データを視覚的に整え、受け手の理解を深める努力をしたいと思います。具体的には、次のことを心がけます。まず、業務が「誰にとっての」「何のための」「どこまでをゴールにした」ものなのかを明確にします。そして、事象を分析する際には、必要なデータが十分に揃っているか確認します。作業を進める中で、分析に漏れがないか、異なる角度から検討が可能かを一度立ち止まって考察します。最後に、データを視覚的にわかりやすく作成することで、自身の分析にも役立ち、他者への説明の際にも理解しやすくなるよう努力します。

データ・アナリティクス入門

仮説で未来を切り拓く!経営戦略の新視点

仮説の整理はどう? 問題解決のプロセスにおいては、「What」「Where」「Why」「How」といった仮説の立て方を4つのステップを通じて理解しました。また、「結論の仮説」と「問題解決の仮説」という2種類に仮説を分類できることも学びました。特に、家具メーカーのWebマーケティングにおける指標へのアプローチは、私にとって非常に参考になりました。メーカーで働く身として、定量的なKPIを用いた費用対効果の分析の重要性を改めて認識しました。WEEK04では内容が難しくなってきましたが、総合演習や課題に取り組みつつ、学びを継続し、単位取得に向けて努めていきます。 マーケ戦略の実践は? WEEK4で学んだ問題解決の仮説を職場で実践する予定です。「仮説思考をマーケティングに適用する」という視点から、3Cや4Pを効果的に利用し、リーダーシップではパッションを持つことを意識して行動したいと考えています。具体的には、ウイスキーの事例で、かつて高価とされていたウイスキーが、若者向けに手頃な缶製品として売上を拡大させた点を参考にしています。これは、今後の新商品の販売においても活用できると感じています。 未来予測の信頼は? 過去のデータを基にした予測はAIに頼ることが多いですが、未来の予測、つまり仮説を立てる部分においては、人間の方が優位であると感じます。他大学では生成AIを使用する学生が増えており、Web上での期末試験にも対策が講じられていることを知りました。生成AIに対抗できるよう、自らの仮説構築や現場課題の抽出を迅速に行い、PDCAサイクルをスムーズに回していきたいと考えています。今回学んだ知見を活かして、12月の競馬のレース、特にデータが少ない馬のレース予測にも挑戦してみるつもりです。

「分析 × 視点」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right