データ・アナリティクス入門

AIDAとAIDMAを理解して見直す購買行動

AIDAとAIDMAの区別は? 「AIDA」と「AIDMA」の違いについて学んだ結果、これまで曖昧だった理解が整理されました。 AIDAの流れはどう? AIDAモデルは、顧客が商品やサービスを購入するまでのプロセスを4つの段階で説明します。最初のAttention(注意)では、消費者が商品やサービスに興味を引かれる段階で、広告やプロモーションが効果的です。次にInterest(興味)で、消費者はさらに情報を求めます。Desire(欲求)の段階では、消費者の心に商品を手に入れたいという欲求が生まれ、最後にAction(行動)で、実際に購入に至ります。 AIDMAは何を重視? AIDAとAIDMAの違いも明確になりました。AIDAは購買行動にフォーカスしていますが、AIDMAは購買前の心理プロセスと記憶を重視しています。AIDMAは消費者が購入に至るまでの詳細な心理プロセスを分析するために適用されます。 ダブルファネルとは? また、「ダブルファネル」という概念についても学びました。これは、パーチェスファネルとインフルエンスファネルを組み合わせたもので、消費者の行動をより詳細に分析することができます。パーチェスファネルは、商品認知から購入までの過程を表し、インフルエンスファネルは購入後の情報発信までの過程を示します。この分析を通じて、顧客行動のボトルネックを特定することが可能です。 クリック率はどう見る? デジタルマーケティングにおいては、クリック率やコンバージョン率の分析が非常に重要です。例えば、当社のWEBサービスのFAQメンテナンスでは、汎用性の高い回答を用意し、0件回答率とミスマッチの原因を分析しています。これにより、顧客満足度の向上を図ることができます。また、掛け合わせたデータを用いて、NPS(ネットプロモータースコア)の向上方法も模索しています。 実務にどう活かす? これらの知識を実務に活かすことで、FAQの分析やマーケティング施策の改善に役立てていきたいと考えています。

データ・アナリティクス入門

数字とグラフで見える成長

比較や仮説の意義に迫る? 本教材では、比較や仮説思考の重要性を改めて確認しました。大量のデータを扱う際、数字化しグラフなどで可視化することで、情報がより明確に把握できることが示されています。 代表値はどう選ぶ? 代表値として、単純平均、荷重平均、幾何平均、そして中央値が挙げられました。それぞれ、状況に応じた使い分けが必要です。たとえば、ばらつきが大きい場合や外れ値がある場合には中央値が適している一方、成長率などの変化割合を捉えるためには幾何平均が有効です。 標準偏差を理解する? また、データのばらつきを理解するためには、標準偏差が重要な指標となります。標準偏差は、平均値との差の二乗和の平均の平方根として計算され、数値が小さいと密集、大きいとばらつきがあることがわかります。正規分布の場合、平均値から標準偏差の2倍以内に約95%のデータが収まるという2SDルールも、実感としての起こりにくさの目安となります。 グラフの効果は何? まとめとして、代表値とばらつきを用いてデータの特性を把握し、グラフなどの可視化を利用すると、非常にわかりやすく情報を整理できることが強調されていました。具体例を用いた説明は非常に効果的で、内容が実践的に応用できる点も評価されます。 荷重平均の活用は? さらに、データ可視化の具体的な利点や、実際の場面で荷重平均をどのように活用するかについて、さらに考えを深める問いが提示されています。これにより、自らの分析手法を実践的に応用する視点が求められています。 実務でどう活かす? 最後に、実務への応用例として、メンバーの時間外労働の管理が取り上げられました。労働時間が所定の範囲内に収まるよう、グラフを用いて傾向を把握する方法や、外れ値がある場合に特定の商品のデータを除外して全体の傾向を見る手法が紹介されました。また、エクセルを活用して各メンバーの代表値やばらつきを算出し、分析の特性に応じた手法が使われているかを確認することで、より実践的なデータ分析支援に繋げる取り組みが示唆されています。

クリティカルシンキング入門

数字の力を引き出す分析の秘訣

データ分析の重要性とは? データに基づいて原因を突き詰めていく際、数値を分解しグラフなどに視覚化することで、傾向が見えてくることがあります。さらに、その数値を分解していくことで、他者に説明する資料としても、表よりもグラフの方が一目瞭然です。 効果的な分解方法を探る 分解の方法としては、"いつ(when)"、"誰が(who)"、"どのように(how)"などがあります。博物館のワークでは外的要因に注目しましたが、そのものの数値自体も分解することが大切です。 発見を得るための試行錯誤が不可欠 切り口や切り方を変えて、いろいろ試してみると違った発見があるかもしれません。キリの良い数字でまとめるのではなく細かく刻むことで、見えてくることがあります。また、段階的に切り口を広げて掘り下げていくことで、新たな発見ができることもあります。様々なアプローチを用いて分析をする結果、データに説得力が生まれます。 分析のプロセスから何を学ぶか? 分析を進める中で、切り口や刻み方によって何も見えてこないこともありますが、それもまた意味のある結果だと言えます。このように色々な方法を試すことが重要です。 実際のデータで見る数字の力 私はあまり数字を扱う業務はありませんが、数字を分析することで見えてくるものがあります。例えば、製品群ごとの売上金額や粗利金額の月別、前年比の比較、契約件数と売上金額の関係性、契約金額と粗利益率の関係などを調べることができます。 優先すべき分析視点とは? これらのデータから、売上低調製品の原因や高粗利商品などの理由を探ることができます。月に一度、売上データを集計し分析を行い、そのデータを基にプレゼン資料を作成します。資料作成の際には、ファクターに基づき数字を視覚化することで説得力のある資料を作成します。 営業活動におけるデータ活用 また、自分の営業活動においてもアポイント数や進捗などを視覚化し、得意先や物件ごとの売上金額、粗利金額などをまとめています。

クリティカルシンキング入門

問いの力で生産性アップと新ビジネスアイデア創出

問いの形にする重要性とは? イシュー特定のためのポイントとして、「問いの形にする」ことの重要性を具体例を交えて理解することができた。自身の業務で問題解決や新たな取り組みに向けた課題設定の場面で考えが滞るのは、問いの形にできていない場合が多いと感じた。問いの形にすることで具体的に考えることができ、仮説が導き出せる。この仮説を検証し、その結果を評価・解析することで、PDCAを確実に回すことができるようになる。 ピラミッドストラクチャーの活用法は? また、ピラミッドストラクチャーを用いた論理構成の組み立て方や、「SO WHAT」「WHY SO」の視点で自身の論理構成をチェックする方法を型として理解できた。これにより、これまで何となくやっていた内容を整理し、他者への説明や資料作成の場面で仕事の生産性を向上させることができると感じた。 フレームワーク活用で何が変わる? さらに、新たなビジネスアイデアを考える際には、これまで活用してきたフレームワーク(P.E.S.T、3C、5フォースなど)から導出した事実や結論をビジネスアイデアの論拠として説明するため、ピラミッドストラクチャーを用いて論理を構成する。それをもとに、「MECEになっているか」や「さらに考える余地はないか」などを検討し、結論―根拠―それを支える事実という構成で相手に伝わる資料・話し方を組み立てる。 イシューの適切性をどう確認する? 表出している問題の解決や新たなことを考える際の課題設定の各場面においては、常に「今解くべき問いは合っているか」を自問する。また、適切でないイシューから出したアウトプットは、報告を受ける相手にとって価値のないものであることを肝に銘じる。 部下と共にイシューを磨くには? 最後に、自身のイシュー設定力を向上させるために、部下との対話の中で相手が「イシューを捉えているか」を確認する。捉えられていない場合には、全体課題の中のどの部分を捉えて話しているのかを常に考え、自身として考える機会を増やすよう心掛ける。

アカウンティング入門

カフェの魅力と損益計算書の秘密

損益計算書の意味は? 損益計算書は、企業の利益を5種類の利益で把握でき、売上高との比率を前期や業界水準、競合との比較からその企業の立ち位置が相対的に明らかになります。今回、カフェを題材に取った学習を通じて、事業コンセプトが経営の指針に影響を及ぼし、それが損益計算書に現れることを学びました。例えば、贅沢感や特別感を追求する場合、豆の仕入れや人件費などのコストが高くなるため、経営の方向性や費用配分が損益計算書に反映されることが理解できました。 高コストの秘密は? 贅沢感・特別感を例にとると、ある有名なカフェチェーンがイメージしやすいです。このような事業では、使用する材料や店員の質、店舗立地などに大きな投資が求められ、その結果、売上高だけでなく売上原価や販管費も高めになります。一方、日常的な感覚を売りにする事業では、比較的リーズナブルな価格設定で広い所得層を取り込み、大量生産と効率的な経営が重視されるため、宣伝費やプロモーションにも力を入れつつ、費用構造が大きく異なることが考えられます。 数字の変化は何? このように、事業コンセプトによって売上高、売上原価、販管費などの金額には差が生じるものの、原価率や利益率の数値においては大きな違いが見られない可能性もあると考えました。今後、お客様の損益計算書を見る際には、具体的な事業活動(売上の作り方や費用の使い方など)をヒアリングし、イメージと損益計算書との関連性を丁寧に読み解くことが求められます。 現状把握のカギは? 例えば、月次面談の際には、損益計算書の推移をもとにお客様の事業活動とリンクして現状を把握し、その結果がどの勘定項目に反映されているかをご説明するよう努めています。また、試算表を作成する際には事業活動をイメージし、関連する勘定科目を考慮します。もし事業内容が不明瞭な場合は改めてお客様に伺い、完成した損益計算書から売上高比率などを算出し、業界水準や前期、他企業との比較を通じて現状と実態が一致しているかを確認することが大切だと感じました。

データ・アナリティクス入門

購入プロセスを深掘りして見える学び

プロセス分解はどう? 原因の分析では、プロセスに分解することが重要です。商品が購入される際には、生活者は多様なプロセスを経ており、これらのプロセスには様々なパターンがあります。まず、これらのパターンを分類し、さらにプロセスごとに分けて考えると良いでしょう。候補を絞り込む際には、まず広い視点で選択肢を洗い出し、その上で排除する根拠を準備します。 仮説はどう立てる? 原因仮説を立てるときは、思考の範囲を広げることがポイントです。ここで役立つのがフレームワークと対概念の活用です。例えば、3Cフレームワークは自社、競合、顧客の観点から分析します。一方、対概念では競合を超えた広い範囲、例えばカテゴリ市場などで仮説を立てることができます。複数の案を比較・検証する際には、条件を揃えて判断することが求められます。 購入プロセスは? 商品が購入されるプロセスとしては、ブランド力がある場合を除けば、次のような流れがあります。まず、商品が目に留まり(パッケージの印象)、次に興味を引き(パッケージ表面の文言)、さらに商品説明を読んで納得し(手に取る)、最後に購入される(かごに入れる)。購入後、消費者に良い商品体験を提供することでブランドイメージが形成され、繰り返しの購入につながります。リピーターが少ない場合には、この商品体験がプラスイメージでない可能性が考えられます。一方で、販売場所が十分にあるのに新規顧客が増えない場合には、このプロセスに分解して原因を特定すべきです。仮説は3Cに加え、それ以外の視点からも考えることが大事です。 魅力の伝え方は? また、どのような商品が消費者の目に留まるのか、どのようなキャッチコピーが購買意欲を刺激するのか、一般の消費者と商品ターゲットの購買プロセスについて理解を深める必要があります。そのためには、まず自身が商品を購入する際に何を基準に判断しているのかを考えることを心掛けると良いでしょう。さらに、店頭観察やアンケート調査を実施することもおすすめです。

データ・アナリティクス入門

グラフでひも解く学びの軌跡

グラフ活用法ってどうする? 今週は、グラフの活用方法について学びました。データのばらつきを視覚的に把握するために、ヒストグラムが有用であると理解しました。たとえば、生徒の年齢のばらつきを見る際には、割合ではなく実数の分布に注目すべきだという点が印象的でした。 どの数値がポイント? また、分析でよく使われる代表的な数値についても復習しました。単純平均・加重平均・幾何平均・中央値など、それぞれの計算方法と用途を確認し、特に平均値は外れ値の影響を受けやすいことに注意が必要だと実感しました。 現場の指摘はどう読む? 現場でDX担当としてデータ分析に取り組む中、先日、部署ごとの退職率を比較して報告した際、経営層から数値の重み付けを考慮するよう指摘を受けました。当初はその意図が分からず戸惑いましたが、加重平均の考え方に近いのではないかと理解し始めています。ランキングだけで示すのではなく、ヒストグラムなどのグラフを用いて視覚的に説明できるよう工夫したいと思います。 数学の基礎は何が大切? 一方で、数学の基礎の重要性を再認識しました。平方根や標準偏差、正規分布と2SDなどの数式が全く理解できず、焦りを感じています。まずは基本を押さえ、Excelの関数でどのように表現できるのか試してみるとともに、ピボットテーブルの復習にも取り組む予定です。 具体例の探し方は? 今回の分析では、どの指標を使うべきか具体例がすぐに思い浮かばなかったため、今後はより多くの具体例を調べるとともに、実際に手を動かして理解を深めるつもりです。遠回りになるかもしれませんが、様々な切り口で数値を検討していきたいと思います。 専門用語、理解できる? また、専門用語の理解もまだ十分ではないと感じており、関連するデータの傾向把握についても、ひとつひとつ学んでいく必要があると実感しました。これからも引き続き、知識を着実に身につけていきたいです。

アカウンティング入門

経営健全性を筋肉質で学ぶ企業分析の魅力

視覚的に経営を理解する方法とは? 内容的にはすでに学んだことが多かったが、他の学習者も書いているように「体の大きさ」を使った例がとても分かりやすかった。「骨格や筋肉」を純資産、「脂肪」を負債とし、純資産の割合が高いことを「筋肉質」と表現するのは、会社の経営の健全性を視覚的に理解する助けとなった。前回学んだ売上高と各利益の違いからも会社の戦略やビジネスモデルを把握できたが、企業の全体像や経営の健全性を具体的にイメージできるようになったのは大きな進展だった。 貸借対照表のストーリー理解法 自社の貸借対照表もまた、ストーリー仕立てで理解することが有効だと気付いた。具体的には、各拠点の経営状況を取締役会での報告に基づいて把握し、今後の建て替え業務などで貸借対照表がどのように変化するかを観察することが有益だと思う。 同業他社との比較で学ぶ 同業他社の貸借対照表を通じて企業規模や戦略を理解することの重要性も感じた。特に、同じ業界内での比較を通じて規模感や経営戦略の違いを学ぶのに役立つだろう。 異業種のビジネスモデル理解の重要性 さらに、他の業界の貸借対照表を見る際には、そのビジネスモデルや資産状況を理解することが重要だと感じた。実際、鉄道会社のように固定資産が多い業界のビジネスモデルをイメージしながら、数字を読み取る練習を続けたい。また、経理の数字に馴染みがない中で、一般的な負債額や規模感を身につけることが事業管理や開発に携わる上で役立つと感じる。 経営者視点での貸借対照表の見方 取締役会の議事録や音声を元に会社の経営状態を理解し、貸借対照表を経営者の視点で見るスキルも重要だと思う。他社の情報を見る際には、まずその会社のビジネスモデルをイメージし、そのイメージを持って貸借対照表を確認。その後、HP上の招集通知などに記載された経営状況の説明を読み込み、具体的なストーリーと数字を結びつけて理解するプロセスが有効であると感じた。

データ・アナリティクス入門

問題解決への仮説立案と検証の実践記

問題発見にどのフレームワークを適用すべき? 問題発見のステップとして、まずWhereのフェーズでどこに問題があるかを考えます。この際、仮説を立て、その仮説が成り立つのかを検証するためにデータを集めます。仮説を立てるときには、フレームワークも有効です。代表的なフレームワークとして、3Cや4Pがあります。 3Cは「顧客」「競合」「自社」の三要素、4Pは「Product(製品)」「Price(価格)」「Place(流通)」「Promotion(広告・販売促進)」を指します。これらのフレームワークを使って仮説を立てると、どこに問題があるのかが明確に見えやすくなります。 4Pを用いた仮説とは? 例えば、今回学んだ例では4Pを使いました。製品については「大学生にとって魅力的な講座ではないのでは?」、価格については「大学生にとって高すぎるのでは?」、流通については「立地が悪いのでは?」、広告については「大学生に認知されていないのでは?」と考えることができました。 仮説検証に必要なデータの収集方法 仮説には結論の仮説と問題解決の仮説があります。これらを過去、現在、将来の時間軸で考えることも重要です。仮説を検証するためのデータの集め方として、現存するデータでの検証方法や新しいデータを集める方法も考慮します。 見逃しやすい観点を見直すには? 現在、分析を行いながら、起こっている現象に対して、いくつかの仮説を立てています。しかし、振り返ると今回学んだフレームワークに当てはめた場合、観点が漏れていることに気づきました。今回学んだことを活用して改めて考えてみたいと思います。 問題の仮説を具体的に書き出し、その際にはフレームワークを適用します。仮説には必要なデータもセットで書き出し、最低でも四つの仮説を立てます。そして、その仮説が正しいのかを来週までに仮の結論を出しておきます。この仮説と検証のプロセスを他人に説明し、共有していく予定です。

リーダーシップ・キャリアビジョン入門

エンパワメントで築く信頼と目標共有の秘訣

エンパワメントのコツは? 松下幸之助の言葉「任せて任せず」に基づく具体的な実践内容が詰まった学習でした。エンパワメントを行う際のコツや留意点として、「余裕を持つこと」「相手をよく知ること(権限を含む)」「エンパワメントに向く、向かない仕事を見極めること」「リスク対策を行うこと」が挙げられます。私に最も不足しているのは余裕を持つことだと再認識しました。エンパワメントは自分のためではなく、メンバーのためであることを常に意識し続けることの重要性を学びました。 目標と計画は大丈夫? リーダーシップ行動の3つのプロセスのうち、①目標を立てて共有することについては、「成功基準があるか」「振り返りができるか」「目標の意義に自分が納得できているか」という要素が重要です。また、目標はメンバーと共有して初めて意味があります。②計画を立てることについては、計画策定をメンバーに任せて考えさせることが大事で、その際には「ゴールとその道筋の認識が一致しているか」が重要です。普段使用しているOSDCフレームワークや段取りのイメージをメンバーに言語化させるよう心がけます。 組織目標は伝わった? 4月に行った方針発表で組織目標を説明しましたが、それだけで「メンバーに正しく伝わった」「目標に共感できている」と思い込んでしまっている可能性があると反省しました。メンバー全員が目標の意義に納得できるよう、丁寧に説明することの重要性を再認識しました。 ビジョン共有すべき? 現在の組織で欠けていると感じるのは「目的・ビジョンの共有」です。年度初めに立てた組織の目標がありますが、今一度その意義を問い直す取り組みをしたいと思います。メンバーと一緒に「今の仕事を辞めると誰が困るのか」「自分やチームの仕事が会社全体のゴールとどう結びつくのか」を考える場を設けます。11月に実施される全社エンゲージメント・サーベイの前にこの場を設定する予定です。

リーダーシップ・キャリアビジョン入門

リーダーシップとは行動で示すもの

リーダーの要件とは? リーダーの要件は、「行動」「能力」「意識」の3つであり、リーダーは行動を通じて評価されます。行動は「能力×意識」で表され、行動がないリーダーは失格とされています。また、行動は真似ができるため、目標とするロールモデルを見つけることが重要です。 リーダーとマネージャーの違いは? 従来から、自社ではリーダーとマネージャーの両者を管理職に求める傾向がありました。私はリーダーとマネージャーの違いについてモヤモヤを感じていましたが、講義を通じてリーダーが組織上の立場とは関係ないことを学びました。この知見から、リーダーとマネージャーとを明確に区分するのではなく、マネージャーとしてリーダーシップを発揮することが求められると理解しました。 目標とするマネージャー像 リーダーとは、付き従う者がいる人物のことです。自分が今のメンバーたちにとって、「これまでで一番のマネージャー」として名前が挙がるような存在になることが目標です。 行動と意識のバランスをどう取る? 普段から「行動=能力×意識」を意識し、リーダーとしての行動が伴っているか、自問自答していきたいと思います。メンバーに仕事を依頼する際には、依頼内容をメンバー自身に復唱してもらい、仕事の背景、段取り、ゴールイメージについてお互いの認識に乖離がないかを確認します。メンバーが不安に感じていることや言語化できないことに対しては、説明を補足します。 実践の場面はいつ? 具体的には以下のような場面で実践します: 1. メンバーから相談があったとき 2. メンバーに仕事を依頼するとき 3. メンバーとの1on1で対話するとき 4. 新入社員とトレーナとの1on1の場に参加するとき これらの場面で、メンバーが持つゴールイメージを言語化してもらい、その背景を伝え、報告・連絡・相談の方法について双方の認識を合わせるよう努めます。

データ・アナリティクス入門

データで読み解く新たな発見の旅

代表値の意義は何? 平均値や中央値は、データを簡潔に理解するための「代表値」として便利です。これらはデータ全体をおおまかに把握するために使用されます。しかし、平均値はデータのばらつきや偏りを考慮しないため、標準偏差などの指標を使ってそのデータの分散を理解することも重要です。ヒストグラムはデータのばらつきをしっかり理解するのに役立ちますし、円グラフは構成要素が占める割合を視覚的に捉えるのに有効です。特に、データに際立ったばらつきがある場合は、その点に焦点を当てて分析することで問題を深堀りしやすくなります。 計算方法の違いは? 代表値の計算方法には、単純平均や加重平均、幾何平均、中央値など様々な種類があります。単純平均は全データの合計を個数で割ったもの、加重平均は各数値に重みを付けて算出するもの、幾何平均は冪根を使って計算します。特に平均値が極端な外れ値の影響を受けやすい場合には、中央値を使用するのが適しています。 標準偏差の役割は何? また、データの散らばりを理解するために標準偏差も重要な指標です。標準偏差は、データの各値との差の二乗の平均として計算され、データのばらつきを数値で示します。さらに、標準偏差の68%ルールや95%ルールは、データの大部分がどの範囲に収まるかを示し、これも理解を助けます。 業務整理にどう活かす? このような統計手法は、顧客の業務を整理する際に役立ちます。例えば、どの業務パターンを外れ値として除外すべきか、それがなぜ合理的なのかを論理的に説明できれば、業務要件をシンプルにするのに貢献します。加重平均を使用して、一部のケースでのみ発生する業務パターンを無視しても影響が小さいことを示したり、幾何平均で業務量の年次増加率を算出し、将来のシステム投資を提案することもできます。このようなシナリオが他にもないか、引き続き検討していきたいと思います。

「説明 × 表」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right