データ・アナリティクス入門

仮説で切り拓く未来戦略

仮説をどう整理する? 今回の講義では、複数の仮説を立て、その網羅性に注目する視点が非常に印象的でした。これまで仮説検証に取り組む際、十分に意識していなかった点も改めて考える良いきっかけとなりました。特に、結論を導くための仮説と問題解決に向けた仮説を、過去・現在・将来の軸で整理して考える手法は、新たな学びとして大変有意義でした。また、仮説を証明するために必要なデータの収集方法や、データを加工する際の視点についても、今後さらに知識を深めるべきと感じました。 データで何を探る? さらに、Google Analytics以外の情報源、例えば売上データや顧客データ、購買データなどから顧客の傾向や購買パターンを把握し、適切な施策へと結びつける重要性を再認識しました。仮説検討時には3Cや4Pの視点を意識し、より具体的な改善策に取り組んでいきたいと考えています。担当クライアントのデータを活用しながら、どの組み合わせの商品が選ばれるのか、また一回あたりの購入金額をいかに向上させるかなど、具体的な戦略を検討し、常に新たな課題や仮説に向き合う姿勢を持ち続けることが大切だと実感しました。

クリティカルシンキング入門

データ分類で在庫管理を効率化する方法

実践で見えた真実は? 学んだこととして、まずは実際に手を動かし、様々な切り口でデータを分類してみることの重要性がありました。その際、5W1Hといった手法を活用しつつ、単純に機械的に分けるのではなく、どのように分ければ意味が出てくるかを考え、仮説を立てることが大切だと理解しました。仮説を立てることで傾向を捉えることができますが、その傾向だけにとらわれず、他に絶対的な傾向はないのかをさらに異なる視点から分析することも重要です。 在庫管理に活かす? 自分の業務では、販売会社の在庫や売上の管理にこのアプローチが役立つと感じました。具体的には、在庫が増える要因や売上が変動する要因の分析に応用できると考えています。例えば、在庫削減の計画を検討する場合、在庫増加の原因を詳細に分析することが、具体的な対策につながると考えています。 売上計画はどうなる? 私が担当している地域では、計画通りに販売が進まないことで在庫が増えているという現状の課題があります。その打開策を考えるために、どの商品がどの顧客先で計画と実績に差が出ているのかを分析し、問題を特定したいと思っています。

マーケティング入門

実務に響く顧客視点の学び

顧客視点って大切? 全6回の学びを振り返る中で、顧客視点の重要性と、ネーミングやコピーの大切さを改めて実感しました。実際に商品企画業務を担当している自分にとって、他職種の方々の学びを聞くことで、マーケティング的な思考は一部の専門家だけのものではなく、あらゆる社会人に求められるスキルであることを理解しました。 どう実務に活かす? 商品企画担当として、今回の学びは実務に直接活かせると考えています。業務に追われ、十分な時間が取れない場合でも、短時間で学びを振り返り、顧客がどのように感じるのか、どのような層に購入してほしいかといった視点からカスタマージャーニーを行うことで、魅力が伝わる商品設計を目指していきたいと思います。 復習で知識定着は? また、マーケティングのフレームワークをより確実に理解するために、何度か復習を行いたいと考えています。普段は使わないために忘れがちな一部のフレームワークについても、忙しい時でも思い出して活用できるよう、しっかりと知識として定着させることを目標としています。学びが定着したら、他のフレームワークにも順次取り組んでいきたいです。

データ・アナリティクス入門

仮説検証が開く未来への扉

原因究明の方法は? 問題の原因を探る場合、詳細に分けて確認しボトルネックを明確にすることで、問題の把握が容易になると感じました。 A/Bテストって有効? また、A/Bテストの概要とその活用方法について学ぶ中で、短期間で仮説の検証と効果測定が可能であること、さらに実際にある国の大統領選挙でも用いられていた実例から、有用性の高さを実感しました。 顧客接点をどう増やす? 担当顧客をセグメントに分け、各セグメントごとにデジタルを活用して顧客とコミュニケーションの機会を生み出す取り組みも印象的でした。例えば、メルマガ配信では、メールのタイトルや構成が開封率やクリック率にどう影響するかを比較する際に、A/Bテストが効果的に活用できそうだと感じました。 テスト後の活かし方は? 実際にA/Bテストを行う際は、1要素ずつ変更し、同一期間でのテスト実施により正確な効果測定ができるよう学んだ内容を参考に実践しています。実施後は、単にテストを終えるのではなく、振り返りの分析をしっかり行い、その結果を次回のテストに活かすことで、継続的な改善につなげています。

クリティカルシンキング入門

イシューを極める論理の道

今の問いの意味は? イシューとは、今ここで答えを出すべき問いのことであり、問いが何であるかを常に意識し、組織全体でその方向性を共有できるよう努める必要があります。 具体化はどう行う? イシューの特定は、問いを具体的な形に落とし込み、一貫して保持することが基本です。また、ピラミッド・ストラクチャーを用いる場合、まずイシューを明確にしてから、論理の枠組みを考え、主張を適切な根拠で支えるというステップが不可欠です。 問題と対応策は? 担当プロジェクトで問題が発生した際には、まずイシューを特定し、その問題に対してぶれず対応策を検討したいと考えています。同様に、事業計画の立案時にも、目標実現に向けた問題点を洗い出し、解決策を提示する上で非常に効果的だと思います。 納得できる資料は? さらに、問題点を徹底的に洗い出し、要素分解や数値分析を実施することで、相手が納得しやすい見やすい資料を作成することが重要です。また、部下や上司、顧客との打ち合わせの際には、目的である問いを明確にし、議論がぶれないよう意識することが大切だと感じています。

マーケティング入門

マーケティングの視点から商品を分析する力

商品の開発と見せ方、何を学んだ? 私は、顧客起点で商品を開発するだけでなく、見せ方を考える際にも顧客にとってのメリットを重視する必要があると学んだ。特に、ネーミングやパッケージの重要性を再確認することができた。新商品であればあるほど、第一印象から連想されるイメージを顧客視点で確認し、構築していく必要があると感じた。 顧客視点で考える時のポイントは? 商品の見せ方を考える際には、話題性を狙うこともあるが、一度立ち止まり、顧客視点で確認することが重要だと思った。自社において売れない商品や廃盤になった商品についても、見せ方を変えることでリブランディングができないか検討することが有効だと思う。 提供価値を逆算するには? また、商品CMからどのような顧客をターゲットにしているのか、提供価値は何なのかを逆算して考えることも大切だ。日ごろからさまざまな商品の見せ方を分析しておくことで、担当商品の見せ方を考える際の幅を広げることができる。自分が買いたいと思った商品については、その理由を深掘りして考えてみることも重要だと感じた。

戦略思考入門

差別化で顧客を引きつける方法

誰に差別化する? 差別化の考え方について学びました。特に重要なのは、「誰に対して差別化を行い、訴求するのか」を明確にすることです。 勝敗は何で決まる? ビジネスの勝敗は、企業同士の直接対決ではなく、顧客が決めるものだと理解しました。そのため、フレームワークを活用し、誰にでも簡単に真似されない方法を考えることが重要です。自社の強みを活かし、他社が真似し続けられない独自の手段を模索することが求められます。 業務設計はどうする? 新しい業務の設計においては、バックオフィス業務を主に担当していますが、新規業務の受注や既存業務の効率化を図る際に、この学びを活用していきます。まず、自社の強みを把握し、顧客ニーズを理解した上で、設計や提案を進めていきます。 行動はどう進む? 現在の業務とすぐに結びつけて行動に移すのは容易ではありませんが、まず自社の強みを明確にするところから始めています。そのため、アイデアを出すには幅広い知見が必要だと考えています。そのために、トレンドや同業他社の施策をインプットしていきます。

データ・アナリティクス入門

データ分析で営業力をアップ!

データ分析の重要性とは? データ分析について、これまで漠然と取り組んできましたが、「データ分析は比較である」という説明が非常に印象的でした。データを扱う際には、その内容をよく考えて、意味を成すものを選別して分析することが大切だと感じました。 営業とマーケティングへの活用 私の仕事は営業とエリアマーケティングを担当しており、売上の変動や要因分析にデータ分析が活用できると考えています。しかし、具体的な活用法についてはまだイメージが固まっていないのが現状です。今後の講義を通じて、どのように自分の仕事に役立てられるかを考えていきたいと思っています。 生産設備におけるデータ活用の可能性 また、私は工場で使用される生産設備の部品販売に携わっています。部品は用途によってさまざまな構成があり、データ分析を通じて顧客がどのようなスペックを求めているのかや、年間でどの程度の生産が可能なのかを理解できれば、マーケティングに大いに役立つでしょう。そのためにもデータ分析に関する書籍や統計学の知識を学ぶ必要があると考えています。

デザイン思考入門

生成Aiが描く共感と挑戦の軌跡

画像作成に何が隠れている? 生成Aiの活用については、以前から会社内でも取り組んでいましたが、特に画像作成にAiを利用している点に驚きを覚えました。これまで画像のパターン作成には挑戦しておらず、今回の機会にぜひ活用してみたいと思います。無料のChat GPTだけでなく、有料版のChat Aiも試していく予定です。 在宅営業で何が難しい? また、エデュケーションチームで営業人材育成のリーダーを務めている中で、対象者を顧客と捉え、その顧客の課題をチーム内でデザイン思考に基づいて解決策を模索する取り組みを始めています。しかし、在宅での営業が多いことから、共感をどのように構築するかが課題となっています。 出社で得る発見は? さらに、4月から週に1回の出社が義務付けられることになったため、出社時には主に営業担当者に対して、共感や観察を丁寧に行っていくつもりです。営業活動中のPCの挙動を、許可を得た上で動画に収め、チームで検証することで新たな課題が浮かび上がるのではないかと試してみたいと考えています。

データ・アナリティクス入門

データ活用力を劇的に向上させる方法

平均値の限界を知る データを分析する際、すぐに平均値を出してしまいがちですが、平均値には外れ値に弱いという特性があることを学びました。また、代表値には様々な種類があることも知り、今後データ分析を行う際には適切な手法を選ぶ必要があると感じました。 精緻な分析を行うには? 収支分析では、単純平均を使用する場合と加重平均を使用する場合を考えることで、より精緻な分析が可能になります。こうした分析により、問題点の把握が促進され、より適切な打ち手を考えやすくなると思います。さらに、効果的なグラフを用いることで、分析結果を周囲に分かりやすく説明できるようになるでしょう。 グラフで何を伝える? 分析を行う際には、常に顧客ごと、業種ごと、各部門や担当者ごとに適切な代表値を用いることを意識します。この結果、売上高や利益、経費、所属人数などが異なる場合でも、より合理的な比較が可能となります。また、分析結果を視覚的に分かりやすいグラフにすることで、事業部としての素早い意思決定にもつながると考えています。

アカウンティング入門

アカウンティングで業務の未来を切り拓く

どうして知識を深める? アカウンティングの知識を習得することで、現在の業務をより高い視点から俯瞰できるようになると考えています。購買部門で働いているため、取引先の選定やコスト決定を担当しています。今後は提案する取引先の財務状況を定量的に分析し、それに基づいて正確な業務提案を行い、上司を説得していくことを目指します。顧客に提供する価値を忘れずに、6週間の講義を継続していきたいです。 どうやって決算を分析する? 担当している取引先の決算情報を正しく把握し、これをもとに将来のサプライヤーやコスト決定の判断材料として活用したいと考えています。また、競合他社の決算状況との比較を通じて、取引先の強みや弱みを整理し、事業の方向性提案につなげることを目指します。 どう学習内容を整理する? 各講義のあと、自社や関係する取引先の決算情報を比較・照合することで、学習内容の理解を深めたいと思っています。特に、自身と関連のある企業を分析対象にすることで、関心を持ち理解度を高めることができると考えます。

アカウンティング入門

数字の裏側で見える経営の真実

利益と価値の関係は? コストを正しく理解することは、顧客に提供する価値を見極める上で重要です。利益獲得の状況は、利益額と利益率の両面から評価すべきです。たとえば、あるカフェビジネスのケースでは、ミノルとアキコがともに営業利益3%を実現していたものの、実際の金額には大きな差が見られました。 利益管理の難しさは? また、担当するポジションによっては、最終利益に至るまでの利益管理が求められる場合があります。しかし、外部からの評価はあくまで最終利益を基準として行われるため、この点を意識する必要があります。 競合分析のポイントは? 次に、競合他社の分析も重要です。まずは全体の動向を把握し、費用対売上高の効率性を中心に検証します。その際、マーケットシェアとの関連性にも注目することが望まれます。 損益比較のコツは? さらに、競合他社の損益計算書(P/L)を確認し、決算短信に記載されているビジネス概要のコメントを参考にしながら、自社のP/Lと比較してみることが効果的です。

「顧客 × 担当」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right