戦略思考入門

日常に潜む戦略の力

戦略思考の本質は? 私が最も印象に残ったのは、戦略思考が大きな目標を達成するためだけでなく、日々の業務を効率化し、目標までの道のりを最短にする普遍的な考え方であるという点です。目の前の業務に追われがちな状況でも、戦略思考を意識することで、限られた時間と資源を最大限に活用できると強く感じました。 外食業で差別化する? 例えば、外食産業で新メニュー開発の目標に取り組む際、闇雲にアイデアを出すのではなく、まず顧客のニーズを明確にし、自社の強みを洗い出し、競合との差別化ポイントを見つけることが大切です。その上で、試作、試食、改良の各工程にどれだけの時間とコストをかけるかを戦略的に計画し、プロセスを最短で進める工夫が必要だと理解しました。こうしたアプローチは、どの業界でも「仕事の型」として有効だと感じています。 営業戦略はどう練る? また、営業部のリーダーとして、戦略思考は自社や営業部の業務全般に活かせると確信しています。新規事業開発なら、市場の成長性や自社の強み、現状分析、資源配分をしっかり見極めることで、事業成功の確度を高めることができます。さらに、営業戦略では、目標顧客の設定や自社の価値、最適な営業手法、リソース配分を戦略的に考えることが重要です。特定の顧客層向けのサービスでは、顧客ニーズを正確に把握し、独自性のあるサービスを提供する戦略が不可欠であり、これには外食業でのマーケットイン思考と通じる部分があります。 販売戦略のコツは? 具体的な行動としては、まず販売促進計画において、市場分析、顧客ニーズ調査、競合分析を徹底し、その結果をもとにゴール、独自性、実施方法、予算(費用対効果も含む)を明確にします。これを週次で進捗確認し、ガントチャートで管理します。 顧客分析のポイントは? 次に、データに基づいた顧客セグメントを行い、各セグメントに最適な企画や営業手法を策定し、週間アクションプランに落とし込み、KPIを設定して進捗をモニタリングします。 部下育成に何が必要? さらに、部下育成では、戦略思考のフレームワークを教育し、OJTで実践させるとともに、定期的な1on1でフィードバックを実施します。部下にも週間アクションプランとガントチャートを作成させ、タイムマネジメント能力の向上を図りたいと考えています。 組織成長はどう実現? これらの取り組みを通じて、戦略思考を組織全体に浸透させ、目標達成の確度を高め、営業部や会社全体の成長に貢献していきたいと実感しています。

データ・アナリティクス入門

データ分析が変えるビジネスの未来

分析を成功させるためには? ライブ授業を通して、次の3点を改めて整理できました。 まず、分析は比較によって成り立つということです。目的とアウトプットを明確にしてから分析に取り組むことで、闇雲な作業を避けることができます。 問題解決のステップをどう活用する? 次に、問題解決のステップ(What-Where-Why-How)の重要性についてです。当日の演習を通じて、これを実際に活用するイメージがつかめました。各ステップでは、目的を明確にし、ロジックツリーの活用や仮説設定、データ収集方法、データの見せ方などのポイントを整理しました。 データ分析から得た新たな発見とは? 最後に、分析のステップとして、検証したいことを具体的にし、仮説を立て、何と比較するかを意識しながらデータを集め、加工してビジュアル化することで、新たな発見が得られることを再確認しました。 また、データ分析の活用については以下の3点が挙げられます。 1. 企画立案時のマーケティングプロセスにおけるデータ活用 現状では、企画立案が現場の勘や経験に偏りがちですが、データを用いることで、より良い意思決定や施策運営につなげたいと考えています。さらに、他の施策との比較や過去のデータ分析を通じて課題点を洗い出し、マーケティングプロセスを改善していきます。 2. 施策振り返り時の検証 施策を振り返る際には、実績に対する問題や課題を明確にし、次の意思決定のために仮説を立てて検証することが重要です。 3. 課題解決に向けた活用 具体的な課題が提示されたときは、問題解決のステップと仮説検証の考え方を用いて取り組んでいきます。 学習方法の見直しがもたらした効果 これらの活用方法を通じて、アウトプットを進めていきたいと考えています。 さらに、本講座の復習をしっかり行い、学んだことを言語化しアウトプットできるようにし、問題解決ステップや仮説思考、フレームワークを実務に取り入れて練習します。自然に使いこなせるようになることを目指します。また、周辺知識の学習も継続的に進めていきます。データ活用にはクリティカルシンキングや伝える力、マーケティングに関する知識が必要で、今回自分に合った学習方法が見えたのも大きな収穫です。 今年度の目標達成に向けた取り組み 今年度は、施策の乱立を防ぎ、効率的な施策運営のために可視化データを作成し、リソースを他の業務に割けるようにしていきたいと思います。そして、掲げた目標に向けて努力を続けます。

戦略思考入門

社内で即実践できるROI分析と戦略設計の秘訣

ROIの重要性とは? ROI(費用対効果)の考え方について学びました。私たちの社内では、案件ごとの稼働率をPowerBIなどを使って分析していますが、手元での試算も有効だと感じました。特に、自分の目の前の業務に活かすためには、小規模な試算も役立つと実感しました。 「捨てる」決断の基準は? 「捨てる」という決断については、客観的指標に基づいて行うことの重要性を学びました。例えば、ROIに基づく費用対効果が低い案件、取引先の成長率、取引規模、人件費などの数値データをもとに判断する必要があります。勘や経験に頼るのではなく、常に数値を基にした思考が必要だと認識しました。 なぜ本質を問い直すのか? 過去の手順や資料を無意識にコピペして使うのではなく、その本質を見つめ直すことが大切です。なぜこの手順が必要なのか、このデータは何のために用意しているのか、といった本質を問い直しながら作業を遂行することが、自身の作業効率を高め、さらに自身のROIを向上させることに繋がります。 トレードオフで優先すべきは? トレードオフの考え方についても学びました。「コスト・リーダーシップ戦略」か「差別化戦略」を重視するかの意思決定が重要です。バックオフィス業務においても、制度設計の際に費用対効果に注力すべきか、差別化戦略に注力すべきかの二つの視点を比較して戦略を考える機会があると感じました。戦略とは意思決定に基づいた行動計画を立てることですので、優先順位の設定と、個人と組織の視点をすり合わせることが重要です。最終的には、それらの最大化ポイントを見つけ、ブレークスルーとなる施策を検討していきたいと思います。 どのようにイシューを設定する? 作業を開始する前に、まずはイシューの設定を行います。過去の資料はあくまで参考にし、その時々の最適化を意識してアップデートを目指します。 数値で目的を明確にするには? 戦略を立てるためには、経営層とのディスカッションを通じて会社の意思確認を行い、目的を明確に引き出すことが必要です。客観的データに基づく情報を集め、それを元に判断を仰ぎます。感覚に頼らず、数値で具体的に意思を引き出す工夫を心がけます。 トレードオフの価値をどう探る? トレードオフの考え方は、相反する要素を並べることから生まれるのかもしれません。どんな「効用」があるのかという要素を洗い出す作業を今後も行っていきたいと思います。

データ・アナリティクス入門

比較で見える、成長の瞬間

分析の基本は? 分析の本質は「比較」にあります。まず、分析は①プロセス、②視点、③アプローチの3つの軸で進めることが基本です。プロセスは大きく4つのSTEPに分かれます。まず目的や問いを明確にし、その問いに対する仮説を立てます。次に、既にあるデータや新たに収集する情報(見る、聞く、行う)を活用してデータを集め、最後に分析によって仮説やストーリーを検証していきます。データ収集時は、サンプリングバイアスや設問設計の影響に注意し、適切なA/Bテストの実施も視野に入れます。 重要視点は何? 次に、分析を行う際に重要な視点は5点あります。まず、インパクト:どの程度の影響があるかを把握し、優先順位をつけること。次に、ギャップ:比較対象や軸を明確にし、どの部分が異なるのかを確認すること。さらに、トレンド:時間の経過による変化の傾向を把握し、異常な部分を見つけること。加えて、ばらつき:全体の分布がどれだけ偏っているかを平均値や中央値などで見ること。そしてパターン:全体や変曲点から法則性を読み取ることが大切です。 グラフの工夫は? また、アプローチとしては、グラフや数字、数式を用いてデータを視覚化する手順があります。まず仮説と伝えたいメッセージ、次に比較対象を明確にし、どのグラフを使用するかを検討します。一般的な項目の比較では横棒グラフやウォーターフォールチャート、時系列の変化を示す場合は折れ線グラフや縦棒グラフ、構成や分布を表すにはヒストグラムや円グラフ、相関関係を示すには散布図が有効です。横棒グラフは特に多用されますが、加工に手間をかけることでより分かりやすくなります。 日常の見直しは? また、日常の業務や振り返り、目標設定・計画立案において、MECEや層別分解といった手法を使いながら、固定観念や偏った思考を見直し、仮説思考を鍛えることも重視しています。社内では、数字や思い付きだけで次を考えるのではなく、定量・定性データ分析の手法を共有し、分析は「比較」に基づくという前提と、意思決定を目的とするという考えを全員で理解しています。この目線合わせのもと、各種フレームワーク(たとえば3C、クロスSWOT、セグメンテーション/ターゲティング/ポジショニング、4Pなど)を取り入れながら、What/Where/Why/Howのステップを踏んで分かりやすいビジュアル資料を作成し、あるべき姿を説得力ある形で提案できるよう学び続けています。

データ・アナリティクス入門

データ分析の成功術を学ぶ旅

目的はどう設定する? データ分析を効果的に行うためには、いくつかの重要なポイントを押さえる必要があります。まず、データ分析に取り掛かる前に、目的や仮説を具体的に設定しておくことが重要です。これにより、分析がスムーズに進むだけでなく、目標に対して効果的な手法を選ぶための指針となります。 切り口はどう選ぶ? 次に、分析のステップとして、問題解決のプロセスには「what, where, why, how」といった段階を経ることが挙げられます。特に、データをどの切り口で見るかを判断する際は、その切り口が解決に役立つかどうかや、データが入手可能かどうかを考慮しなければなりません。また、平均値を用いる際には、データのばらつきも確認することが不可欠です。代表値を選ぶ場合も、元データの傾向を理解しておくことが必要です。 数値の意味はどう見る? 実数と率を確認することも重要です。たとえ割合が大きく見えたとしても、実数が少なければ優先度は高くないかもしれません。分析はただ闇雲に行うのではなく、数字の根拠に基づいたストーリーを描くことが求められます。そのためには、データの傾向をつかみ、特に見るべきポイントを明確にする必要があります。データは伝えたいことが分かりやすい形に加工することが望ましいです。 解決策はどう選ぶ? 解決策を選定する際には、得た知見をもとに複数の選択肢を洗い出し、判断基準を持って選定することが求められます。例えば、販促施策の振り返りでは、単に目標に対する数値を比較するのではなく、何が成功したのか、どんな改善が必要か、そしてその理由を深掘りすることが重要です。 SNS戦略は見直す? さらに、自社のSNS運営方針の再検討においては、現状の方針が適切かを評価し、必要であれば異なる方向性を検討することも考慮すべきです。インプレッションやコンバージョン率などのデータを参考にすることで、同じ目標に対しても新しいアプローチを見つけることが可能です。 検証はどのように進む? 仮説を立てた後、その検証を進める際には、結論に飛びつかず、複数の視点から考慮することが重要です。これにより、示唆の幅を広げることができ、問題解決に向けたステップを適切に踏むことができます。分析を行う際に少しでも学んだことを次に活かし、適切な場面で適切な手法を用いることが、成功の鍵となります。

デザイン思考入門

デザイン思考で生まれる祭りの奇跡

なぜ夏祭りに魅かれる? 私が参加している地域活動の中で、毎年9月に自治会主催で開催される公園での夏祭りに、デザイン思考の手法を応用できる可能性を感じました。地域住民が自ら作り上げ、参加する祭りは、住民間の一体感を醸成し、地域コミュニティの維持に大変意義があると考えています。 情報の集め方は? まずは、地域の動態データや歴史、地形・自然環境といった定量情報の収集に加え、住民の意識や興味を探るため、街並みの観察や各種団体、学校、飲食店での会話など、幅広い交流を実施しました。そして、夏祭りに特化し、過去の祭りの感想やアイデア、場合によってはネット上のコメントなどを収集し、さらには他地域の事例も参考にすることで、多角的な視点から祭りのあり方を見直しました。 住民の反応は? 収集した情報をもとに、地域住民をいくつかのパターンに分類し、ペルソナを設定して共感マップを作成しました。参加意欲の高い層、興味はあるが一歩踏み出せない層、自分には関係ないと感じる層など、複数の視点からユーザー体験を明確にし、夏祭りへの参加インサイトを浮き彫りに、カスタマージャーニーを設計しました。 意見のまとめ方は? その後、地域住民を対象としたワークショップを複数回開催し、参加者全員でビジョンやミッションを共有しながら、様々な課題の抽出とアイデア出しを行いました。実行グループには自治会の担当者も加わり、ブレインストーミングやシミュレーションを経て、評価を得ながら具体的な実施計画を策定しました。全員で高め合うために、意見の偏りが生じないよう付箋などを用いてアイデアを平等に扱う工夫も取り入れました。 計画実行の秘訣は? 実行計画は、予算やスケジュール、人的資源、リスクなどの各要素を評価し、必要なパフォーマンスの確保方法も検討しながら、効率的に進めるためのプロジェクトマネジメント手法を取り入れました。基本的にはウォーターフォール方式を採用しつつ、進捗に合わせて新たなアイデアも取り入れ、柔軟に対応しました。 デザイン思考の本質は? この一連のプロセスを通して、デザイン思考は単なる定型のプロセス消化ではなく、課題を深く掘り下げ、考え、アイデアを創出する反復作業であることを実感しました。各分野の知見や専門家の協働、また異なる視点を持つ作業者同士の意見調整が、最終的な成果に大きく影響すると感じています。

クリティカルシンキング入門

業務で活かすクリティカルシンキングの実践法

クリティカルシンキングの重要性とは? クリティカルシンキングにおいて、自分自身を批判的に考えることがまず印象的でした。本講座を受講する中で、業務において客観的に物事を考え、説得力のある説明や実効性のある施策を目指して取り組みました。以下の3点が特に学びとして強調されました。 1. 考え方: 課題を検討するゴール(イシュー)から必ず考えること。 2. 施策検討: ロジックツリーを用いた分析。 - データ分析でイシューの場所を特定(Where) - 原因究明(Why) - 施策検討(How) - 施策による副作用検討 - 実行 このプロセスでは、既存のフレームワーク(MECE、SWOT、3C、4Pなど)を使い、偏らないようにします。 3. 伝え方: ピラミッドストラクチャー(主張と根拠)とスライドの工夫(1スライド1メッセージ、効果的な可視化)。 新卒採用に潜む課題は? 現在、私は人事担当として、要員計画、能力開発、人事制度、エンゲージメントなどの施策を検討しています。例えば、要員計画の一環として新卒採用施策を検討する際、多くの学生に応募してもらうためのイベントの拡充に取り組んできましたが、本講座を通じて「取り組みやすい施策に飛びつく」傾向があることに気付きました。 新卒採用における課題を「会社になじめず早期退職やメンタル不調になる若手」と「売り手市場での質・量の確保が難しい点」の2つに設定した場合、イベントの拡充は有効ですが、前者への取り組みが不足していると感じました。 より良い施策実現に向けてどう進めるべきか? 今後は、具体的施策を検討する前に全体のイシューをロジックツリーで整理し、原因(Where、Why)および具体策(How)を検討します。そして、同僚や上司からのフィードバックを反映し、より良い施策を実施します。 最近受講したWeek5では、以下の点に取り組んでおり、継続して進めたいと思っています。 1. 現在取り組んでいる人事施策のイシューの洗い出しと優先順位の設定。 2. 自分が実務を担当する業務では、原因の特定と施策の検討。 3. 部下が実務を担当する業務では、クリティカルシンキングの考え方を紹介。 例えば、各人事施策に対して、「取り組みやすさ」に逃げず、本質的な課題に正面から向き合って解決していきたいと考えています。

データ・アナリティクス入門

対概念で拓く経営戦略の新視点

対概念の意義は何? 対概念とは、ある概念に対して反対または対照的な意味を持つ別の概念を考えることで、物事をより明確に理解し議論の幅を広げる手法です。問題解決に取り組む際は、原因をプロセスに分解する方法、複数の解決策を根拠をもって絞り込む視点、A/Bテスト方式を活用した実践検証、そしてデータ分析を組み合わせた段階的な課題抽出と検証の流れが重要となります。 M&Aリスクはどう考える? 例えば、M&A案件のリスク評価と意思決定においては、ポジティブな要素であるシナジー効果と、ネガティブな統合リスクを対概念として捉え、財務リスク、組織文化、オペレーションといった要因に分解して考えます。各リスク要因を定量化することで、M&A後の成功確率を高めるためのより正確な判断が可能となります。 統合戦略はどれが最適? また、企業の経営戦略策定、特にM&A後の統合戦略においては、段階的統合と急速統合という二つのアプローチを検討し、A/Bテスト方式でそれぞれの効果を比較します。統合プロセスの進捗データや業績、従業員満足度といった具体的な指標をもとに、どちらの戦略がより良い成果を生むかを実証的に評価していきます。 リスク評価の秘訣は? さらに、リスク評価のためのフレームワーク作成では、過去の成功事例や失敗事例をデータベース化し、財務、組織文化、オペレーション、市場環境といった指標を基にリスク評価シートを作成します。これにより、各案件ごとのリスクが客観的に評価され、精度の高い投資判断を導き出すことが期待されます。 定量化結果は何? 続いて、データ分析を用いた定量化では、財務データや従業員エンゲージメント、企業文化の適合度を測る指標を設定し、回帰分析や相関分析を活用します。特に、文化の不一致が従業員の離職率に与える影響などを数値化することで、過去のM&Aデータから成功パターンや失敗パターンを明らかにし、これを次の意思決定に生かすことが可能となります。 結果の信頼はどう確保? 対概念とA/Bテストを通じて物事を深く理解しようとする姿勢は非常に評価できます。今後は、どのような状況で対概念を活用するのが効果的か、またA/Bテストで得られた結果の信頼性をどのように確保していくかといった点について、さらに思考を深めながら実践につなげていくことが求められます。

クリティカルシンキング入門

みるみる変わる!振り返りで学ぶ資料術

目標設定はどう考える? まず、資料作成に取りかかる前に、目標の設定が大切だと感じました。誰に向けて(ターゲット)何を伝えるのか(目的)を明確にすることで、相手の先入観や関心、思想の傾向を考慮しながら、反論などにも備える準備が進みます。次に、資料をロジカルな構成にすることを意識します。MECEやピラミッドストラクチャーなどを用いながら、あらましから入り、問題点の本質や分析、結論へと導く流れを設計します。具体的には、グラフや図などを活用し、収集したデータを分かりやすく表現することに努めます。また、反論や疑問への対応としてサブデータの準備も欠かしません。文言については、説明の際に話しやすいよう、無駄な言葉を省いて見出し的な表現で簡潔にまとめるよう心がけています。最後に、説明後にどこが良く、どこが悪かったかを振り返ることで、次回に活かす学びとなる点が大切だと感じました。 実務に活かす資料作成は? また、私はIT業界に従事している中で、資料作成が実務にも役立っていると実感します。たとえば、要件定義では、お客様の要望をどのように取り入れ実現しているかを、相手の理解レベルに合わせた分かりやすい資料で説明します。プロジェクト管理の場面でも、進捗やリスクの報告で、現状をデータに基づいて分析する際に、このスキルが活用されています。さらに、万が一のトラブル時には、要因の特定や改善の見込み、損失の大きさを資料化して報告する際にも役立ちます。これらの様々な場面で、分かりやすく伝えるための資料作成が重要な役割を果たしていると感じています。 伝達スキルの磨き方は? そして、「他者に伝える」というスキルを身につけるために、行動計画も策定しています。まず、資料作成の準備段階で、目的とターゲットを明確にし、ヒアリングやプロジェクトデータの収集、受け手の嗜好に合わせた準備を進めます。次に、MECEやピラミッドストラクチャーを意識し、図やグラフを用いてシンプルかつ分かりやすい文章で表現します。さらに、資料作成後は発表の工夫も必要です。たとえば、結論を先に述べる、専門用語を避けるなど、聞き手に配慮した話し方を心がけ、質問を受け入れるなど対話にも重きを置いています。最後に、発表後の振り返りと改善策を検討し、次回に活かすサイクルを繰り返すことが、より確実なスキル向上につながると考えています。

データ・アナリティクス入門

プロセス重視で解決策を見つける秘訣

解決策立案の重要性を痛感 今回は、問題解決のプロセスである「What」「Where」「Why」「How」の「How(解決策の立案)」について学びました。このステップでも、「What」「Where」「Why」同様、複数の仮説を立てることが重要で、仮説の質が問題解決の精度に大きな影響を及ぼすことを改めて実感しました。プロセスに分ける、対概念を活用し対に分けるといったアプローチを学びました。 最適解の選び方を知ろう また、最適な解決策を選択する際には、複数の判断基準を持ち、その重要度に基づいて重み付けを行い、基準を揃えて総合的かつ定量的に評価することで、決めつけや思い込みを排除し、客観性と説得力を担保できると学びました。 仮説検証をハイサイクルで さらに、仮説の確からしさを求めすぎず、仮説検証をハイサイクルで実施することで、より良い仮説検証が行われ、結果として本質的な解決策に結びつくことを理解しました。 共通の留意点とは? 「What」「Where」「Why」「How」の各プロセスで共通して留意すべきポイントは以下の4点です。 1. 目的と仮説を明確にする。 2. 複数の仮説を立てる。ビジネスフレームワークや「分ける」という概念を活用する。 3. 仮説を検証する際は、基準を揃え、分析結果を基に定量的に評価する。 4. 仮説の設定と検証をハイサイクルで行う。 計画策定に向けた意識改革 次期中期事業計画の策定時には、現場で培った経験や勘で導き出した答えを、ビジネスフレームワークを利用して正しいプロセスを一つずつ踏んで答え合わせする意識を持ちたいと思います。ビジネスフレームワークの選定、指標や基準の設定、仮説の構築、データの収集・比較・定量評価、仮説の検証、本質的な解決策の選択など、あらゆる場面で客観性と説得力を備えた事業計画を策定することを目指します。 日常業務での実践ポイント 日々の現場業務の中でも、以下の2点を意識して深く考える癖を身に付け、具体と抽象を行き来することを習慣化したいと思います。 - より高い視座とより広い視野でものごとを見つめるマインドセットを持つ。 - 仮説の確からしさを求めすぎず仮説検証をハイサイクルで実施する。 心に留めておくべきキーワードは「一つ一つ丁寧に」「プロセスを重視する」「胸を借りる」です。

戦略思考入門

戦略思考で拓く学びの未来

目標はどう決める? 戦略志向とは、適切なゴールを定め、現状からそのゴールまでの最速かつ最短の道筋を描くことだと改めて実感しました。また、バリューチェーンの視点をより深く理解することで、生産性向上のヒントが得られることを痛感しました。今まで「分かったつもり」で進めていた部分を改め、指数関数的な変化に対して敏感に反応する必要性を感じました。 返報性を活かすには? さらに、返報性の原則を戦略的に活用する重要性にも気づきました。本質を見抜き、仕組みを捉えるためには、とにかく実践して自社の3C分析を試みることが大切だと感じています。同時に、最新のテクノロジーや新たな知識を継続的に学び続ける必要性も強く感じました。 規模調整はどうする? 規模の経済性については、コンサルタントの数が増えることで、一人当たりの固定費を下げる可能性があると理解しました。しかし、社員を増やしすぎるとコミュニケーションや各種管理コストが増大するため、フロントの生産性を最大化できる最適な規模を見極めることが非常に重要であると考えました。また、習熟効果においては、入社後の成長過程や、先輩の知見を若手に効率よく移転する仕組みを再評価すべきだと感じました。 AIで採用は変わる? ネットワークの経済性の観点から、金融業界以外でも適切なコンセプトを設定することで採用決定にかかるコストを削減できる点は大いに示唆に富んでいました。目の前のお客様への対応に加え、外部環境そのものの変化、特に生成AIの進展によるリクルーティングビジネスへの影響を、より深く分析する必要性があると痛感しました。指数関数的に進化する技術に遅れをとらないため、自社でもその活用方法を積極的に模索していく所存です。 採用戦略はどう進化? 最後に、データに基づいた人材発掘や自動化された評価・選考、企業ニーズの高度な分析、最適なマッチング、リモート面接・契約支援、さらには入社後のパフォーマンス追跡といった、一連のリクルーティングビジネスのバリューチェーンについて学ぶ機会は非常に有意義でした。また、自社のビジネスプロセスの本質を見極め、2フロア分の家賃負担と8割の在宅勤務という現状を踏まえ、社員の最適な増員シミュレーションを行うことで、固定費の軽減と利益率の向上を図る重要性を再認識しました。

データ・アナリティクス入門

ビジネスフレームワークで仮説を確かめる方法を学ぶ

効果的な仮説の立て方は? 今回は、「Why(原因の分析)」について学びました。このステップでも「What」「Where」同様に、複数の切り口を持ち、複数の仮説を立てることが重要だと実感しました。特に、切り口の感度の良さや仮説の筋の良さが問題解決の精度に大きな影響を及ぼすことを改めて痛感しました。高い視座と広い視野を持ち、ビジネスフレームワークを活用して大局的かつ網羅的に複数の仮説を立てることが有効だと学びました。 具体と抽象の使い分け方は? また、仮説の分類として「問題解決の仮説」と「結論の仮説」があり、前者は具体化、後者は抽象化が肝要です。具体と抽象を使い分けて行き来できるように練習することが必要だと改めて感じました。 データ検証のプロセスの重要性は? そして、仮説は検証して初めて意味を持ちます。データを収集し(既存データに不足があれば新たにデータを集め)、指標を定め、その指標で比較できるように適宜データを加工し、段階的に仮説を絞り込み検証を繰り返すプロセスが重要であると学びました。 ツールを活用するために何が必要か? ツールがあることは助かりますが、使いこなせなければ意味がありません。仮説設定やデータ収集・結果の比較を通して「経験や勘による決め打ちや意図的な絞り込み」という負の側面が出ないように、正しいプロセスを意識し、目的に適したツールを正しく使いこなせるように練習を繰り返したいと考えています。 次期事業計画の策定にどう活かす? 次期中期事業計画の策定時には、このプロセスを活用します。「なぜ今ターゲット顧客から選ばれているのか」を深堀りし、仮説を設定してその再現性と競争優位の持続可能性を検証したいと思います。どのビジネスフレームワークを使って仮説を設定し、どの指標で比較し絞り込むかを考え、一つずつ丁寧に進めていきたいです。 客観性と説得力を保つためには? 『経験や勘で導き出した答えの確からしさを、ビジネスフレームワークを用いて正しいプロセスを踏むことで確認する』という意識を持ちながら、フレームワークの選定や指標の設定、データの収集・比較、仮説の絞り込みなどの過程で、経験や勘による決め打ちや結論ありきの意図的なものにならないよう常に意識し、客観性と説得力を担保するように努力します。

「データ × 設定」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right