データ・アナリティクス入門

正しい思考で磨く自分の軌跡

正しい思考は何? 沢山のフレームワークが出てきましたが、本質は正しい考え方や思考方法を知り、学び、定着させることだと感じました。習得するためには継続的な取り組みが必要で、これまでノートにまとめたメモを見返しつつ、改めてここに整理してみました。 仮説をどう作る? 【仮説の構築】 まず、問題を明確にする(What)、問題箇所を特定する(Where)、原因を追求する(Why)、そして解決策を立てる(How)のプロセスを大切にしています。仮説を立てる際には、複数の可能性を網羅し、一つに決め打ちしないことを意識しています。 また、取り巻く環境を3C(Customer:市場や顧客、Competitor:競合、Company:自社)の視点で考え、自社の状況は4P(Product:製品、Price:価格、Place:場所、Promotion:販促手法)で検討することで、より具体的な分析が可能になります。 情報の取り方は? 【データ収集】 既存のデータや一般に公開されている情報、パートナーの所持するデータを確認することから始め、さらにアンケートやインタビューなどで新たに情報を集める取り組みを行っています。誰に、どのように情報を収集するか、また比較できるデータを忘れずに取る点が重要だと意識しています。 どう考えを広げる? 【仮説思考】 仮説とは、ある論点に対する一時的な答えです。結論や問題解決のための仮説を、知識を広げ多角的な視点から検討することで、説得力と行動の精度を高めることができます。思考実験や「なぜ?」を繰り返すなど、ロジックツリーを活用しながら多様な仮説を生み出し、常に発想を広げる努力が求められます。 仮説はどう検証? 【仮説の検証】 仮説と検証はセットで考え、投資額や巻き込む人数、不確実性といった観点から必要な検証レベルを見極めます。初期段階で枠組みを設定し、定量・定性のデータを収集・分析することで、より客観性のある仮説の肉付けや再構築を行うようにしています。 市場をどう見る? 【マーケティング・ミックスとその他の分析手法】 製品戦略、価格、流通、プロモーションのそれぞれの側面を4Pで検証することに加え、5Aカスタマージャーニーを活用して現代の顧客行動を捉えています。また、クロス集計分析を通して、全体の傾向や特徴、特異点を把握し、次の打ち手を考えるための洞察を得ることも重視しています。 実行にどう生かす? 最終的には、これらのフレームワークや手法を日常的に活用することで、検証マインドを鍛え、チーム全体に浸透させる意識を持つことが、戦略の立案や実行に大きく寄与すると実感しました。

データ・アナリティクス入門

データ分析の失敗談から学ぶ成功法

データ分析における意思決定とは? ビジネスにおける意思決定において、データ分析は非常に重要な役割を果たします。数値を可視化することで先入観にとらわれずに合理的な判断が可能となります。また、比較の際には、条件を揃えた上での分析が重要です。目的を明確にすることで、何を明らかにしたいのかという背景を理解し、分析の効果を最大化することができます。 失敗をどう教訓に活かすか? 日々の業務ではこれらの点を意識してデータ分析を行っているつもりでしたが、振り返ってみるとできていないことも多く、過去には目的を明確にしないまま分析に臨んだ結果、時間を無駄にして失敗に終わった経験もあります。しかし、この失敗を教訓に、分析の依頼者に対して背景や目的を確認することで、効率的なデータ抽出と適切な要因分析ができ、最終的には施策の成功に貢献することができました。この経験を通じて、分析の初期段階で目的を明確にすることの重要性を再認識しました。 今後の分析に向けた意識改革 現在の分析経験はまだ少ないと感じており、依頼されたものだけでなく自ら事業の課題に対してデータ分析を行い、積極的に提案していきたいと考えています。ウェブサイトの行動履歴ログを基にした流入、離脱、コンバージョンの分析を通じて、カスタマーの動きを把握し、学んだ知識を活かす場面は増えそうです。 依頼者とのコミュニケーションの重要性 過去には依頼者とのコミュニケーション不足で目的が不明確なまま進め、失敗した経験もありました。今後は、何を明らかにするための分析なのかを明確にし、依頼者と密にコミュニケーションを図ることで認識のすり合わせを心掛けます。また、データ抽出の間違いで時間を無駄にした経験から、目的達成のために必要な情報を収集し続ける努力を欠かさないようにします。さらに、分析結果を言語化する際には、簡潔かつ構造的にまとめることを目指します。 スキルの向上と今後の展望 これからは、データ分析に必要な情報を依頼者とのコミュニケーションを通じて収集し、過去の失敗や学んだ知識を活かして、目的の明確化、仮説の設定、納期、データ抽出の定義など、依頼者とすり合わせを行い、認識の齟齬をなくすよう努めます。依頼者が求める分析の目的を見失わないように、すり合わせた内容を基にして、全体像を把握するデータ抽出から始めるつもりです。分析結果は言語化し、依頼者と密にコミュニケーションをとり、振り返りを行います。 学んだ知識をもとに行動を重ね、情報収集やデータ抽出方法のツール、プログラムの習得などのスキルを磨きつつ、事業の課題に対して正確なデータ分析レポートを提供できるよう努力を続けていきます。

デザイン思考入門

会話から覗く隠れた顧客ニーズ

会話分析で隠れたニーズは? 定性分析について学んだ中で、CRMの管理者として、営業担当が顧客との面談で交わした会話内容をテキスト分析することで、隠れたニーズを発掘できるのではないかと考えました。一人ひとりの顧客に対し、営業担当自身がそのニーズに気づけるCRMシステムが理想です。しかし、そのシステムが効果を発揮するためには、まず営業担当のインタビュー能力を高め、会話内容を漏れなくテキストとして記録する仕組みが必要だと感じました。 研修でどう均てんする? インタビュー能力の均てん化は研修を通じて改善できると考え、記録については音声入力などのテクノロジーが一定の解決策を提供してくれるのではないかと思います。 セグメントの切り口は何? また、顧客のセグメンテーションは売上などの定量的な視点からだけでなく、定性分析を通じてこれまでとは異なる切り口で行える可能性があり、その各セグメントに対する最適な解決策を考えることができると感じました。このため、膨大なテキストデータのコーディング作業が非常に重要だと考え、AIの活用により効率的に対応できるのではないかと期待しています。 システム改善をどう確認する? システム導入については、すぐに実施するのは難しい状況ですが、リニューアルされた別のシステムが以前より使いやすくなったかどうかをチャットベースでのインタビューを通して確認する取り組みも行っています。ただし、単に「使いやすくなった」といった安易な回答に終始せず、具体的にどの点が改善され、どこに課題があるのかを掘り下げる質問をしていくことが重要だと考えています。たとえば、普段どのページにアクセスしているのか、そのページやデータへのアクセスが容易になったかを確認するなど、具体的な視点から質問を設定しています。 利用意義をどう問う? また、システム利用によって本来的に実現したいことに焦点を当てる必要性も感じました。問題点を問うのではなく、見たいデータへのアクセス手順が改善されたか、データがインサイトを得られるように可視化されているか、といった具体的な問いを設定するべきです。ざっくばらんに意見を募ると、後々コーディングして集約する際に混乱が生じる恐れがあります。 仮説構築の秘訣は何? 定量分析が仮説の検証を目的とするのに対し、定性分析は新たな仮説構築を目的とします。コーディングを通じてプロセスやフレームワークを構築することで、これまで想定しなかった要素も明らかになるでしょう。デザイン思考においては、仮説が広範囲になりすぎず、解決策ありきの課題設定を避けることが肝要だと感じました。

クリティカルシンキング入門

問いが導く成長の旅

「問い」から始まる重要性は? 特に下記の3点が学びとなりました。 まず、「問いから始めること」の重要性です。人間は「なんとなく」から始めがちなので、「問い」は何かを意識することがスタート地点となります。 問いの共有がもたらす効果は? 次に、「問いを残すこと」の大切さを学びました。問いを意識しても忘れてしまったり、その内容を忘れてしまうことがあります。したがって、問いを常に意識し続けることが重要です。 さらに、「問いを共有すること」も理解しました。仲間内で問いを共有することで、自分一人ではなく、組織全体の力で解決に導くことができるというところが大切です。 データ視覚化の新たな気付き ★課題についての学び まず、データの分解と視覚化の重要性です。データを単に表示するだけでなく、課題の本質を明確にするためには、データの適切な分解と視覚化が不可欠であることが分かりました。特に、データを複数の視点から分析することで、隠れた問題を浮き彫りにすることができます。 明確な課題設定の重要性を再認識 次に、課題設定の明確化の必要性を学びました。課題を適切に設定し、具体的に表現することで、問題解決に向けた取り組みがより効果的になることを認識しました。曖昧な問題設定ではなく、具体的な課題を明示することが解決策の提案や実行を促進します。 ターゲットに応じた戦略はどう構築する? さらに、ターゲットに応じた戦略の必要性についても理解しました。特定のターゲット層に焦点を当てた戦略が有効であり、ターゲットを絞り、そのニーズに合った商品やサービスを提供することが課題解決につながるという学びです。 柔軟なマーケティング戦略の意義とは? マーケティング戦略の柔軟性も重要だと学びました。市場の変化に対応し、季節ごとに異なるニーズに応じた柔軟な戦略を展開することで、持続的な成長が可能になるという洞察を得ました。 システム導入で重要なサポートとは? システム導入のサポートに関しては、タスクを細分化しそれぞれに役割を持たせ、最終的にゴールに導く予定です。以下の2点を重視します。 1. チームで動くとき、ミーティング時などには常に最初にイシューを明確にして目線を整えること。人は意識しても忘れてしまうものだからです。 2. 議論の方向性がズレそうなとき、イシューは何かを考えて素早く軌道修正できる思考を持ち続けること。悪意がなくともズレてしまうことが多いためです。今後は問いを続け、本質や核心に迫る議論ができるよう行動していきます。

データ・アナリティクス入門

データ分析の真髄に迫る学びの旅

データ分析の基本とは? まず初めに、データ分析の大前提として「データは分析し結論を導き出すための情報・数値であること」と「分析の本質は比較であること」が言語化されていたことが印象的でした。これにより、分析の目的や方法を再認識することができました。 目的を見失わないためには? 分析の目的を見失わないこと、目的を果たすために適切な仮説を立てることは重要です。しかし、実際には想定結果が出ず、焦ってデータ収集をやり直すことや、仮説が間違っていて最初からやり直すことが多々ありました。これは、深く考えることが不足しているからだと改めて気づきました。 効果的な比較対象の選定法 また、比較の対象を選定する際、分析する要素以外の条件を揃えることができていなかったように思います。さらに、分析結果をもとに意思決定を行うためには、どのようなデータをどう加工すると伝わりやすいかを理解することも欠かせません。データの種類に応じた加工法やグラフの見せ方ができていないケースが多く、自己満足に陥っていたと感じました。 第三者の知識をどう活かす? これからは、まず自らしっかり考え、第三者の知識や知見・知恵を借り、フィードバックを活かすことが重要であると再認識しました。 次期中期計画にどう活かす? 次期中期事業計画の策定時には、現状を振り返り、次期中期計画を「なぜその目標を設定するのか」「なぜそれを独自性(強み)と仮定したのか」「なぜそれをやる/やらないと仮定したのか」「現経営資源を踏まえた場合、なぜその方針が妥当なのか」と問うことで、分析結果を用いて説得力を持たせたいと考えています。「目指すべき目標を明確にする」「独自性(強み)を持ち自覚する」「やることとやらないことを峻別する」「目標までの道のりの妥当性を示す」これらを一つずつ丁寧に進めていくつもりです。 ゴールをどう明確にする? バランススコアカードを用いて現在の中期計画の問題点を再考し、新たなビジョンと戦略を立てるためにゴールを明確にし、その達成策を明示します。戦略マップを作り、戦略の構造化を図ることで、分かりやすいアクションプランを立てたいと考えます。データ分析に基づくことで、より良い意思決定ができると信じています。 初めての取り組みに挑むには? 初めての取り組みが多いですが、「自ら深く考える」「第三者の知識や知見・知恵を借りる」「フィードバックを活かす」ことを繰り返し、関係者全員にとって有益な中期計画にしていきたいと考えています。

戦略思考入門

日常に潜む戦略の力

戦略思考の本質は? 私が最も印象に残ったのは、戦略思考が大きな目標を達成するためだけでなく、日々の業務を効率化し、目標までの道のりを最短にする普遍的な考え方であるという点です。目の前の業務に追われがちな状況でも、戦略思考を意識することで、限られた時間と資源を最大限に活用できると強く感じました。 外食業で差別化する? 例えば、外食産業で新メニュー開発の目標に取り組む際、闇雲にアイデアを出すのではなく、まず顧客のニーズを明確にし、自社の強みを洗い出し、競合との差別化ポイントを見つけることが大切です。その上で、試作、試食、改良の各工程にどれだけの時間とコストをかけるかを戦略的に計画し、プロセスを最短で進める工夫が必要だと理解しました。こうしたアプローチは、どの業界でも「仕事の型」として有効だと感じています。 営業戦略はどう練る? また、営業部のリーダーとして、戦略思考は自社や営業部の業務全般に活かせると確信しています。新規事業開発なら、市場の成長性や自社の強み、現状分析、資源配分をしっかり見極めることで、事業成功の確度を高めることができます。さらに、営業戦略では、目標顧客の設定や自社の価値、最適な営業手法、リソース配分を戦略的に考えることが重要です。特定の顧客層向けのサービスでは、顧客ニーズを正確に把握し、独自性のあるサービスを提供する戦略が不可欠であり、これには外食業でのマーケットイン思考と通じる部分があります。 販売戦略のコツは? 具体的な行動としては、まず販売促進計画において、市場分析、顧客ニーズ調査、競合分析を徹底し、その結果をもとにゴール、独自性、実施方法、予算(費用対効果も含む)を明確にします。これを週次で進捗確認し、ガントチャートで管理します。 顧客分析のポイントは? 次に、データに基づいた顧客セグメントを行い、各セグメントに最適な企画や営業手法を策定し、週間アクションプランに落とし込み、KPIを設定して進捗をモニタリングします。 部下育成に何が必要? さらに、部下育成では、戦略思考のフレームワークを教育し、OJTで実践させるとともに、定期的な1on1でフィードバックを実施します。部下にも週間アクションプランとガントチャートを作成させ、タイムマネジメント能力の向上を図りたいと考えています。 組織成長はどう実現? これらの取り組みを通じて、戦略思考を組織全体に浸透させ、目標達成の確度を高め、営業部や会社全体の成長に貢献していきたいと実感しています。

データ・アナリティクス入門

データ分析が変えるビジネスの未来

分析を成功させるためには? ライブ授業を通して、次の3点を改めて整理できました。 まず、分析は比較によって成り立つということです。目的とアウトプットを明確にしてから分析に取り組むことで、闇雲な作業を避けることができます。 問題解決のステップをどう活用する? 次に、問題解決のステップ(What-Where-Why-How)の重要性についてです。当日の演習を通じて、これを実際に活用するイメージがつかめました。各ステップでは、目的を明確にし、ロジックツリーの活用や仮説設定、データ収集方法、データの見せ方などのポイントを整理しました。 データ分析から得た新たな発見とは? 最後に、分析のステップとして、検証したいことを具体的にし、仮説を立て、何と比較するかを意識しながらデータを集め、加工してビジュアル化することで、新たな発見が得られることを再確認しました。 また、データ分析の活用については以下の3点が挙げられます。 1. 企画立案時のマーケティングプロセスにおけるデータ活用 現状では、企画立案が現場の勘や経験に偏りがちですが、データを用いることで、より良い意思決定や施策運営につなげたいと考えています。さらに、他の施策との比較や過去のデータ分析を通じて課題点を洗い出し、マーケティングプロセスを改善していきます。 2. 施策振り返り時の検証 施策を振り返る際には、実績に対する問題や課題を明確にし、次の意思決定のために仮説を立てて検証することが重要です。 3. 課題解決に向けた活用 具体的な課題が提示されたときは、問題解決のステップと仮説検証の考え方を用いて取り組んでいきます。 学習方法の見直しがもたらした効果 これらの活用方法を通じて、アウトプットを進めていきたいと考えています。 さらに、本講座の復習をしっかり行い、学んだことを言語化しアウトプットできるようにし、問題解決ステップや仮説思考、フレームワークを実務に取り入れて練習します。自然に使いこなせるようになることを目指します。また、周辺知識の学習も継続的に進めていきます。データ活用にはクリティカルシンキングや伝える力、マーケティングに関する知識が必要で、今回自分に合った学習方法が見えたのも大きな収穫です。 今年度の目標達成に向けた取り組み 今年度は、施策の乱立を防ぎ、効率的な施策運営のために可視化データを作成し、リソースを他の業務に割けるようにしていきたいと思います。そして、掲げた目標に向けて努力を続けます。

戦略思考入門

社内で即実践できるROI分析と戦略設計の秘訣

ROIの重要性とは? ROI(費用対効果)の考え方について学びました。私たちの社内では、案件ごとの稼働率をPowerBIなどを使って分析していますが、手元での試算も有効だと感じました。特に、自分の目の前の業務に活かすためには、小規模な試算も役立つと実感しました。 「捨てる」決断の基準は? 「捨てる」という決断については、客観的指標に基づいて行うことの重要性を学びました。例えば、ROIに基づく費用対効果が低い案件、取引先の成長率、取引規模、人件費などの数値データをもとに判断する必要があります。勘や経験に頼るのではなく、常に数値を基にした思考が必要だと認識しました。 なぜ本質を問い直すのか? 過去の手順や資料を無意識にコピペして使うのではなく、その本質を見つめ直すことが大切です。なぜこの手順が必要なのか、このデータは何のために用意しているのか、といった本質を問い直しながら作業を遂行することが、自身の作業効率を高め、さらに自身のROIを向上させることに繋がります。 トレードオフで優先すべきは? トレードオフの考え方についても学びました。「コスト・リーダーシップ戦略」か「差別化戦略」を重視するかの意思決定が重要です。バックオフィス業務においても、制度設計の際に費用対効果に注力すべきか、差別化戦略に注力すべきかの二つの視点を比較して戦略を考える機会があると感じました。戦略とは意思決定に基づいた行動計画を立てることですので、優先順位の設定と、個人と組織の視点をすり合わせることが重要です。最終的には、それらの最大化ポイントを見つけ、ブレークスルーとなる施策を検討していきたいと思います。 どのようにイシューを設定する? 作業を開始する前に、まずはイシューの設定を行います。過去の資料はあくまで参考にし、その時々の最適化を意識してアップデートを目指します。 数値で目的を明確にするには? 戦略を立てるためには、経営層とのディスカッションを通じて会社の意思確認を行い、目的を明確に引き出すことが必要です。客観的データに基づく情報を集め、それを元に判断を仰ぎます。感覚に頼らず、数値で具体的に意思を引き出す工夫を心がけます。 トレードオフの価値をどう探る? トレードオフの考え方は、相反する要素を並べることから生まれるのかもしれません。どんな「効用」があるのかという要素を洗い出す作業を今後も行っていきたいと思います。

データ・アナリティクス入門

比較が拓くデータの新常識

データ比較はどう進める? 分析の基本原則は「比較」であり、まずはデータを比較する目的に立ち返ることが大切だと感じました。データ収集の前に仮説を設定し、その仮説を検証していくプロセスの中で、データをどのように加工して示すかという点が今回の学びのポイントでした。加工の視点としては、大きく代表値と散らばりの2つに分けられ、代表値には単純平均、加重平均、幾何平均、中央値があること、そして散らばりについては標準偏差で表現されることを学びました。 外れ値の対応はどうする? 今までは単純平均しか扱ったことがなく、重みを考慮した平均やべき乗を利用した手法は初めて触れる内容でした。また、平均値だけでは捉えきれない外れ値に対しては中央値を用いることで対応する方法がある点も新鮮でした。標準偏差については、なぜルートがつくのかという計算過程が理解でき、正規分布の場合にデータの約95%が±2個分の範囲に収まるという納得感を得ることができました。これまで平均を取るだけで思考が止まってしまっていた部分を、散らばりの視点からデータ活用の具体的なイメージに結び付けることができました。 移住データで何が見える? また、人口減少対策において活用される移住者データを分析することへの関心が高まりました。各市町村の移住者データを様々な属性で分析し、特に年齢や家族構成の散らばりを調べることで、どの施策に注力すべきかを推測するひとつの手法となり得ると感じています。現状、移住促進施策はUターン促進とIターン促進の大別がなされており、例えばUターンでは地元を想う集まりの取り組みを強化し、Iターンではボランティアや副業などにより継続的な関わりを持つ関係人口への支援を強化するという方針です。こうした大まかな区分に加え、より具体的な属性の分析が進むことで、移住理由を数値的に捉え、具体的な施策検討に役立てることができそうです。 今後の分析計画は? 今後は、所管部署に対して詳細な個別データの入手が可能かどうか問い合わせる予定です。データが手に入れば、エクセルを用いた分析に取り組みたいと思っています。特に県全体と沿岸地域の違いを明らかにすることで、一緒に施策を進める市町村の担当者や移住コーディネーターの方々の取り組みにも影響を与えられるのではないかと感じています。5月20日(火)に、所管部署の担当者が意見交換に来訪する予定のため、その際にデータ入手の依頼を進めるつもりです。

データ・アナリティクス入門

比較で見える、成長の瞬間

分析の基本は? 分析の本質は「比較」にあります。まず、分析は①プロセス、②視点、③アプローチの3つの軸で進めることが基本です。プロセスは大きく4つのSTEPに分かれます。まず目的や問いを明確にし、その問いに対する仮説を立てます。次に、既にあるデータや新たに収集する情報(見る、聞く、行う)を活用してデータを集め、最後に分析によって仮説やストーリーを検証していきます。データ収集時は、サンプリングバイアスや設問設計の影響に注意し、適切なA/Bテストの実施も視野に入れます。 重要視点は何? 次に、分析を行う際に重要な視点は5点あります。まず、インパクト:どの程度の影響があるかを把握し、優先順位をつけること。次に、ギャップ:比較対象や軸を明確にし、どの部分が異なるのかを確認すること。さらに、トレンド:時間の経過による変化の傾向を把握し、異常な部分を見つけること。加えて、ばらつき:全体の分布がどれだけ偏っているかを平均値や中央値などで見ること。そしてパターン:全体や変曲点から法則性を読み取ることが大切です。 グラフの工夫は? また、アプローチとしては、グラフや数字、数式を用いてデータを視覚化する手順があります。まず仮説と伝えたいメッセージ、次に比較対象を明確にし、どのグラフを使用するかを検討します。一般的な項目の比較では横棒グラフやウォーターフォールチャート、時系列の変化を示す場合は折れ線グラフや縦棒グラフ、構成や分布を表すにはヒストグラムや円グラフ、相関関係を示すには散布図が有効です。横棒グラフは特に多用されますが、加工に手間をかけることでより分かりやすくなります。 日常の見直しは? また、日常の業務や振り返り、目標設定・計画立案において、MECEや層別分解といった手法を使いながら、固定観念や偏った思考を見直し、仮説思考を鍛えることも重視しています。社内では、数字や思い付きだけで次を考えるのではなく、定量・定性データ分析の手法を共有し、分析は「比較」に基づくという前提と、意思決定を目的とするという考えを全員で理解しています。この目線合わせのもと、各種フレームワーク(たとえば3C、クロスSWOT、セグメンテーション/ターゲティング/ポジショニング、4Pなど)を取り入れながら、What/Where/Why/Howのステップを踏んで分かりやすいビジュアル資料を作成し、あるべき姿を説得力ある形で提案できるよう学び続けています。

データ・アナリティクス入門

仮説とデータで勝つ戦略

仮説は本質か? WEEK4では、仮説を立てそれをデータで検証する思考法を学びました。仮説は「感覚」ではなく、根拠ある問いとして設定し、目的に合ったデータを収集・分析することが大切であると理解しました。たとえば、あるターゲット層に向けた広告の効果については、申込経路や具体的な単価など、定量的なデータをもとに検証することで、説得力のある改善策を導き出すことが可能だと感じました。 4Pで本質見出す? また、マーケティングの4P(Product、Price、Place、Promotion)の視点から仮説を組み立てることで、問題の本質や見落とされがちな課題が浮かび上がることにも気づかされました。特に、費用対効果を比較する際は、単なる表面的な数字ではなく、単位あたりの価値を基準に判断する重要性を実感しました。 検証と戦略は? この一連の流れ、すなわち仮説の設定、データの収集、検証、そして改善への取り組みは、単なる分析作業に留まらず、意思決定や戦略立案の基盤となることを再認識させてくれました。実際に現場で改善を実行するためには、データを正しく読む目と、仮説を深める思考の両方が必要であると感じました。 販促成功の鍵は? さらに、講師養成講座の販売促進においては、WEEK4で得た知見が「感覚」ではなく根拠ある判断を下すための基盤として活用できると考えます。広報活動における意思決定やターゲットの把握、また販促効果の見直しなど、戦略設計全体に渡り、大いに役立つと感じました。 計画実行は可能か? また、マナー講師養成講座の促進に向けた具体的な行動計画を4週間で立てました。 まず、Week 1では、ターゲット別に仮説を設定し、販促チャネルの効果についても仮説を立て、データ収集の項目を決定しました。 次に、Week 2では、過去数年間の申込者データを整理し、広報媒体ごとの広告実績を収集、さらに簡易なアンケートも実施しました。 Week 3では、ヒストグラムや円グラフなどを用いてデータの可視化を行い、費用対効果の高い媒体を絞り込むと同時に、仮説の正否を検証し、重点ターゲットを確定させました。 最後に、Week 4で、ターゲット別のプロモーションを再設計し、重点媒体への予算を再配分するとともに、効果検証体制を整えることで、改善策を実行に移しました。 この行動計画は実効性が高いと自分なりに評価しています。

データ・アナリティクス入門

データ分析の成功術を学ぶ旅

目的はどう設定する? データ分析を効果的に行うためには、いくつかの重要なポイントを押さえる必要があります。まず、データ分析に取り掛かる前に、目的や仮説を具体的に設定しておくことが重要です。これにより、分析がスムーズに進むだけでなく、目標に対して効果的な手法を選ぶための指針となります。 切り口はどう選ぶ? 次に、分析のステップとして、問題解決のプロセスには「what, where, why, how」といった段階を経ることが挙げられます。特に、データをどの切り口で見るかを判断する際は、その切り口が解決に役立つかどうかや、データが入手可能かどうかを考慮しなければなりません。また、平均値を用いる際には、データのばらつきも確認することが不可欠です。代表値を選ぶ場合も、元データの傾向を理解しておくことが必要です。 数値の意味はどう見る? 実数と率を確認することも重要です。たとえ割合が大きく見えたとしても、実数が少なければ優先度は高くないかもしれません。分析はただ闇雲に行うのではなく、数字の根拠に基づいたストーリーを描くことが求められます。そのためには、データの傾向をつかみ、特に見るべきポイントを明確にする必要があります。データは伝えたいことが分かりやすい形に加工することが望ましいです。 解決策はどう選ぶ? 解決策を選定する際には、得た知見をもとに複数の選択肢を洗い出し、判断基準を持って選定することが求められます。例えば、販促施策の振り返りでは、単に目標に対する数値を比較するのではなく、何が成功したのか、どんな改善が必要か、そしてその理由を深掘りすることが重要です。 SNS戦略は見直す? さらに、自社のSNS運営方針の再検討においては、現状の方針が適切かを評価し、必要であれば異なる方向性を検討することも考慮すべきです。インプレッションやコンバージョン率などのデータを参考にすることで、同じ目標に対しても新しいアプローチを見つけることが可能です。 検証はどのように進む? 仮説を立てた後、その検証を進める際には、結論に飛びつかず、複数の視点から考慮することが重要です。これにより、示唆の幅を広げることができ、問題解決に向けたステップを適切に踏むことができます。分析を行う際に少しでも学んだことを次に活かし、適切な場面で適切な手法を用いることが、成功の鍵となります。

「データ × 設定」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right